Self-organized state formation in magnonic vortex crystals
We study the polarization-state formation in magnonic vortex crystals via scanning transmission x-ray microscopy. Self-organized state formation is observed by adiabatic reduction of a high-frequency field excitation. The emerging polarization patterns are shown to depend on the frequency of excitat...
Gespeichert in:
Veröffentlicht in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2013-12, Vol.88 (22), Article 224425 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 22 |
container_start_page | |
container_title | Physical review. B, Condensed matter and materials physics |
container_volume | 88 |
creator | Adolff, Christian F. Hänze, Max Vogel, Andreas Weigand, Markus Martens, Michael Meier, Guido |
description | We study the polarization-state formation in magnonic vortex crystals via scanning transmission x-ray microscopy. Self-organized state formation is observed by adiabatic reduction of a high-frequency field excitation. The emerging polarization patterns are shown to depend on the frequency of excitation and the strength of the dipolar interaction between the elements. In spite of the complexity of the investigated system, global order caused by local interactions creates polarization states with a high degree of symmetry. A fundamental dipole model and coupled equations of motion are adopted to analytically describe the experimental results. The emerging states can be predicted by a fundamental stability criterion based on the excitability of eigenmodes in the crystal. Micromagnetic simulations give additional insight into the underlying processes. |
doi_str_mv | 10.1103/PhysRevB.88.224425 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701088612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701088612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-b0f45e48b71c1cc592676469d66b3152503e72f2bb4e9937d84276d7c22fc0df3</originalsourceid><addsrcrecordid>eNo1kDtPwzAURi0EEqXwB5gysqRcXz_DBhUvqRKIh8RmJY5dgpK42GlF-fUEFabzDUffcAg5pTCjFNj54_s2PbnN1UzrGSLnKPbIhAoBOTLxtj9uKHQOFOkhOUrpA4DyguOEXDy71uchLsu--XZ1loZycJkPsSuHJvRZ02dduexD39hsE-LgvjIbt6PVpmNy4Ee4kz9OyevN9cv8Ll883N7PLxe5RQ1DXoHnwnFdKWqptaJAqSSXRS1lxahAAcwp9FhV3BUFU7XmqGStLKK3UHs2JWe731UMn2uXBtM1ybq2LXsX1slQBRS0lhRHFXeqjSGl6LxZxaYr49ZQML-hzH8oo7XZhWI_DnFdUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701088612</pqid></control><display><type>article</type><title>Self-organized state formation in magnonic vortex crystals</title><source>American Physical Society Journals</source><creator>Adolff, Christian F. ; Hänze, Max ; Vogel, Andreas ; Weigand, Markus ; Martens, Michael ; Meier, Guido</creator><creatorcontrib>Adolff, Christian F. ; Hänze, Max ; Vogel, Andreas ; Weigand, Markus ; Martens, Michael ; Meier, Guido</creatorcontrib><description>We study the polarization-state formation in magnonic vortex crystals via scanning transmission x-ray microscopy. Self-organized state formation is observed by adiabatic reduction of a high-frequency field excitation. The emerging polarization patterns are shown to depend on the frequency of excitation and the strength of the dipolar interaction between the elements. In spite of the complexity of the investigated system, global order caused by local interactions creates polarization states with a high degree of symmetry. A fundamental dipole model and coupled equations of motion are adopted to analytically describe the experimental results. The emerging states can be predicted by a fundamental stability criterion based on the excitability of eigenmodes in the crystal. Micromagnetic simulations give additional insight into the underlying processes.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.88.224425</identifier><language>eng</language><subject>Adiabatic flow ; Condensed matter ; Crystals ; Excitation ; Fluid flow ; Formations ; Mathematical models ; Polarization ; Vortices</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2013-12, Vol.88 (22), Article 224425</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-b0f45e48b71c1cc592676469d66b3152503e72f2bb4e9937d84276d7c22fc0df3</citedby><cites>FETCH-LOGICAL-c280t-b0f45e48b71c1cc592676469d66b3152503e72f2bb4e9937d84276d7c22fc0df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Adolff, Christian F.</creatorcontrib><creatorcontrib>Hänze, Max</creatorcontrib><creatorcontrib>Vogel, Andreas</creatorcontrib><creatorcontrib>Weigand, Markus</creatorcontrib><creatorcontrib>Martens, Michael</creatorcontrib><creatorcontrib>Meier, Guido</creatorcontrib><title>Self-organized state formation in magnonic vortex crystals</title><title>Physical review. B, Condensed matter and materials physics</title><description>We study the polarization-state formation in magnonic vortex crystals via scanning transmission x-ray microscopy. Self-organized state formation is observed by adiabatic reduction of a high-frequency field excitation. The emerging polarization patterns are shown to depend on the frequency of excitation and the strength of the dipolar interaction between the elements. In spite of the complexity of the investigated system, global order caused by local interactions creates polarization states with a high degree of symmetry. A fundamental dipole model and coupled equations of motion are adopted to analytically describe the experimental results. The emerging states can be predicted by a fundamental stability criterion based on the excitability of eigenmodes in the crystal. Micromagnetic simulations give additional insight into the underlying processes.</description><subject>Adiabatic flow</subject><subject>Condensed matter</subject><subject>Crystals</subject><subject>Excitation</subject><subject>Fluid flow</subject><subject>Formations</subject><subject>Mathematical models</subject><subject>Polarization</subject><subject>Vortices</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo1kDtPwzAURi0EEqXwB5gysqRcXz_DBhUvqRKIh8RmJY5dgpK42GlF-fUEFabzDUffcAg5pTCjFNj54_s2PbnN1UzrGSLnKPbIhAoBOTLxtj9uKHQOFOkhOUrpA4DyguOEXDy71uchLsu--XZ1loZycJkPsSuHJvRZ02dduexD39hsE-LgvjIbt6PVpmNy4Ee4kz9OyevN9cv8Ll883N7PLxe5RQ1DXoHnwnFdKWqptaJAqSSXRS1lxahAAcwp9FhV3BUFU7XmqGStLKK3UHs2JWe731UMn2uXBtM1ybq2LXsX1slQBRS0lhRHFXeqjSGl6LxZxaYr49ZQML-hzH8oo7XZhWI_DnFdUQ</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Adolff, Christian F.</creator><creator>Hänze, Max</creator><creator>Vogel, Andreas</creator><creator>Weigand, Markus</creator><creator>Martens, Michael</creator><creator>Meier, Guido</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20131201</creationdate><title>Self-organized state formation in magnonic vortex crystals</title><author>Adolff, Christian F. ; Hänze, Max ; Vogel, Andreas ; Weigand, Markus ; Martens, Michael ; Meier, Guido</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-b0f45e48b71c1cc592676469d66b3152503e72f2bb4e9937d84276d7c22fc0df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adiabatic flow</topic><topic>Condensed matter</topic><topic>Crystals</topic><topic>Excitation</topic><topic>Fluid flow</topic><topic>Formations</topic><topic>Mathematical models</topic><topic>Polarization</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adolff, Christian F.</creatorcontrib><creatorcontrib>Hänze, Max</creatorcontrib><creatorcontrib>Vogel, Andreas</creatorcontrib><creatorcontrib>Weigand, Markus</creatorcontrib><creatorcontrib>Martens, Michael</creatorcontrib><creatorcontrib>Meier, Guido</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adolff, Christian F.</au><au>Hänze, Max</au><au>Vogel, Andreas</au><au>Weigand, Markus</au><au>Martens, Michael</au><au>Meier, Guido</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-organized state formation in magnonic vortex crystals</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>88</volume><issue>22</issue><artnum>224425</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>We study the polarization-state formation in magnonic vortex crystals via scanning transmission x-ray microscopy. Self-organized state formation is observed by adiabatic reduction of a high-frequency field excitation. The emerging polarization patterns are shown to depend on the frequency of excitation and the strength of the dipolar interaction between the elements. In spite of the complexity of the investigated system, global order caused by local interactions creates polarization states with a high degree of symmetry. A fundamental dipole model and coupled equations of motion are adopted to analytically describe the experimental results. The emerging states can be predicted by a fundamental stability criterion based on the excitability of eigenmodes in the crystal. Micromagnetic simulations give additional insight into the underlying processes.</abstract><doi>10.1103/PhysRevB.88.224425</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1098-0121 |
ispartof | Physical review. B, Condensed matter and materials physics, 2013-12, Vol.88 (22), Article 224425 |
issn | 1098-0121 1550-235X |
language | eng |
recordid | cdi_proquest_miscellaneous_1701088612 |
source | American Physical Society Journals |
subjects | Adiabatic flow Condensed matter Crystals Excitation Fluid flow Formations Mathematical models Polarization Vortices |
title | Self-organized state formation in magnonic vortex crystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A32%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-organized%20state%20formation%20in%20magnonic%20vortex%20crystals&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Adolff,%20Christian%20F.&rft.date=2013-12-01&rft.volume=88&rft.issue=22&rft.artnum=224425&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.88.224425&rft_dat=%3Cproquest_cross%3E1701088612%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701088612&rft_id=info:pmid/&rfr_iscdi=true |