Self-organized state formation in magnonic vortex crystals

We study the polarization-state formation in magnonic vortex crystals via scanning transmission x-ray microscopy. Self-organized state formation is observed by adiabatic reduction of a high-frequency field excitation. The emerging polarization patterns are shown to depend on the frequency of excitat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2013-12, Vol.88 (22), Article 224425
Hauptverfasser: Adolff, Christian F., Hänze, Max, Vogel, Andreas, Weigand, Markus, Martens, Michael, Meier, Guido
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 22
container_start_page
container_title Physical review. B, Condensed matter and materials physics
container_volume 88
creator Adolff, Christian F.
Hänze, Max
Vogel, Andreas
Weigand, Markus
Martens, Michael
Meier, Guido
description We study the polarization-state formation in magnonic vortex crystals via scanning transmission x-ray microscopy. Self-organized state formation is observed by adiabatic reduction of a high-frequency field excitation. The emerging polarization patterns are shown to depend on the frequency of excitation and the strength of the dipolar interaction between the elements. In spite of the complexity of the investigated system, global order caused by local interactions creates polarization states with a high degree of symmetry. A fundamental dipole model and coupled equations of motion are adopted to analytically describe the experimental results. The emerging states can be predicted by a fundamental stability criterion based on the excitability of eigenmodes in the crystal. Micromagnetic simulations give additional insight into the underlying processes.
doi_str_mv 10.1103/PhysRevB.88.224425
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701088612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701088612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-b0f45e48b71c1cc592676469d66b3152503e72f2bb4e9937d84276d7c22fc0df3</originalsourceid><addsrcrecordid>eNo1kDtPwzAURi0EEqXwB5gysqRcXz_DBhUvqRKIh8RmJY5dgpK42GlF-fUEFabzDUffcAg5pTCjFNj54_s2PbnN1UzrGSLnKPbIhAoBOTLxtj9uKHQOFOkhOUrpA4DyguOEXDy71uchLsu--XZ1loZycJkPsSuHJvRZ02dduexD39hsE-LgvjIbt6PVpmNy4Ee4kz9OyevN9cv8Ll883N7PLxe5RQ1DXoHnwnFdKWqptaJAqSSXRS1lxahAAcwp9FhV3BUFU7XmqGStLKK3UHs2JWe731UMn2uXBtM1ybq2LXsX1slQBRS0lhRHFXeqjSGl6LxZxaYr49ZQML-hzH8oo7XZhWI_DnFdUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701088612</pqid></control><display><type>article</type><title>Self-organized state formation in magnonic vortex crystals</title><source>American Physical Society Journals</source><creator>Adolff, Christian F. ; Hänze, Max ; Vogel, Andreas ; Weigand, Markus ; Martens, Michael ; Meier, Guido</creator><creatorcontrib>Adolff, Christian F. ; Hänze, Max ; Vogel, Andreas ; Weigand, Markus ; Martens, Michael ; Meier, Guido</creatorcontrib><description>We study the polarization-state formation in magnonic vortex crystals via scanning transmission x-ray microscopy. Self-organized state formation is observed by adiabatic reduction of a high-frequency field excitation. The emerging polarization patterns are shown to depend on the frequency of excitation and the strength of the dipolar interaction between the elements. In spite of the complexity of the investigated system, global order caused by local interactions creates polarization states with a high degree of symmetry. A fundamental dipole model and coupled equations of motion are adopted to analytically describe the experimental results. The emerging states can be predicted by a fundamental stability criterion based on the excitability of eigenmodes in the crystal. Micromagnetic simulations give additional insight into the underlying processes.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.88.224425</identifier><language>eng</language><subject>Adiabatic flow ; Condensed matter ; Crystals ; Excitation ; Fluid flow ; Formations ; Mathematical models ; Polarization ; Vortices</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2013-12, Vol.88 (22), Article 224425</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-b0f45e48b71c1cc592676469d66b3152503e72f2bb4e9937d84276d7c22fc0df3</citedby><cites>FETCH-LOGICAL-c280t-b0f45e48b71c1cc592676469d66b3152503e72f2bb4e9937d84276d7c22fc0df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Adolff, Christian F.</creatorcontrib><creatorcontrib>Hänze, Max</creatorcontrib><creatorcontrib>Vogel, Andreas</creatorcontrib><creatorcontrib>Weigand, Markus</creatorcontrib><creatorcontrib>Martens, Michael</creatorcontrib><creatorcontrib>Meier, Guido</creatorcontrib><title>Self-organized state formation in magnonic vortex crystals</title><title>Physical review. B, Condensed matter and materials physics</title><description>We study the polarization-state formation in magnonic vortex crystals via scanning transmission x-ray microscopy. Self-organized state formation is observed by adiabatic reduction of a high-frequency field excitation. The emerging polarization patterns are shown to depend on the frequency of excitation and the strength of the dipolar interaction between the elements. In spite of the complexity of the investigated system, global order caused by local interactions creates polarization states with a high degree of symmetry. A fundamental dipole model and coupled equations of motion are adopted to analytically describe the experimental results. The emerging states can be predicted by a fundamental stability criterion based on the excitability of eigenmodes in the crystal. Micromagnetic simulations give additional insight into the underlying processes.</description><subject>Adiabatic flow</subject><subject>Condensed matter</subject><subject>Crystals</subject><subject>Excitation</subject><subject>Fluid flow</subject><subject>Formations</subject><subject>Mathematical models</subject><subject>Polarization</subject><subject>Vortices</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo1kDtPwzAURi0EEqXwB5gysqRcXz_DBhUvqRKIh8RmJY5dgpK42GlF-fUEFabzDUffcAg5pTCjFNj54_s2PbnN1UzrGSLnKPbIhAoBOTLxtj9uKHQOFOkhOUrpA4DyguOEXDy71uchLsu--XZ1loZycJkPsSuHJvRZ02dduexD39hsE-LgvjIbt6PVpmNy4Ee4kz9OyevN9cv8Ll883N7PLxe5RQ1DXoHnwnFdKWqptaJAqSSXRS1lxahAAcwp9FhV3BUFU7XmqGStLKK3UHs2JWe731UMn2uXBtM1ybq2LXsX1slQBRS0lhRHFXeqjSGl6LxZxaYr49ZQML-hzH8oo7XZhWI_DnFdUQ</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Adolff, Christian F.</creator><creator>Hänze, Max</creator><creator>Vogel, Andreas</creator><creator>Weigand, Markus</creator><creator>Martens, Michael</creator><creator>Meier, Guido</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20131201</creationdate><title>Self-organized state formation in magnonic vortex crystals</title><author>Adolff, Christian F. ; Hänze, Max ; Vogel, Andreas ; Weigand, Markus ; Martens, Michael ; Meier, Guido</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-b0f45e48b71c1cc592676469d66b3152503e72f2bb4e9937d84276d7c22fc0df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adiabatic flow</topic><topic>Condensed matter</topic><topic>Crystals</topic><topic>Excitation</topic><topic>Fluid flow</topic><topic>Formations</topic><topic>Mathematical models</topic><topic>Polarization</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adolff, Christian F.</creatorcontrib><creatorcontrib>Hänze, Max</creatorcontrib><creatorcontrib>Vogel, Andreas</creatorcontrib><creatorcontrib>Weigand, Markus</creatorcontrib><creatorcontrib>Martens, Michael</creatorcontrib><creatorcontrib>Meier, Guido</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adolff, Christian F.</au><au>Hänze, Max</au><au>Vogel, Andreas</au><au>Weigand, Markus</au><au>Martens, Michael</au><au>Meier, Guido</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-organized state formation in magnonic vortex crystals</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>88</volume><issue>22</issue><artnum>224425</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>We study the polarization-state formation in magnonic vortex crystals via scanning transmission x-ray microscopy. Self-organized state formation is observed by adiabatic reduction of a high-frequency field excitation. The emerging polarization patterns are shown to depend on the frequency of excitation and the strength of the dipolar interaction between the elements. In spite of the complexity of the investigated system, global order caused by local interactions creates polarization states with a high degree of symmetry. A fundamental dipole model and coupled equations of motion are adopted to analytically describe the experimental results. The emerging states can be predicted by a fundamental stability criterion based on the excitability of eigenmodes in the crystal. Micromagnetic simulations give additional insight into the underlying processes.</abstract><doi>10.1103/PhysRevB.88.224425</doi></addata></record>
fulltext fulltext
identifier ISSN: 1098-0121
ispartof Physical review. B, Condensed matter and materials physics, 2013-12, Vol.88 (22), Article 224425
issn 1098-0121
1550-235X
language eng
recordid cdi_proquest_miscellaneous_1701088612
source American Physical Society Journals
subjects Adiabatic flow
Condensed matter
Crystals
Excitation
Fluid flow
Formations
Mathematical models
Polarization
Vortices
title Self-organized state formation in magnonic vortex crystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A32%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-organized%20state%20formation%20in%20magnonic%20vortex%20crystals&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Adolff,%20Christian%20F.&rft.date=2013-12-01&rft.volume=88&rft.issue=22&rft.artnum=224425&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.88.224425&rft_dat=%3Cproquest_cross%3E1701088612%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701088612&rft_id=info:pmid/&rfr_iscdi=true