Entropy stable discontinuous interfaces coupling for the three-dimensional compressible Navier–Stokes equations
Non-linear entropy stability and a summation-by-parts (SBP) framework are used to derive entropy stable interior interface coupling for the semi-discretized three-dimensional (3D) compressible Navier-Stokes equations. A complete semidiscrete entropy estimate for the interior domain is achieved combi...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2015-06, Vol.290, p.132-138 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 138 |
---|---|
container_issue | |
container_start_page | 132 |
container_title | Journal of computational physics |
container_volume | 290 |
creator | Parsani, Matteo Carpenter, Mark H. Nielsen, Eric J. |
description | Non-linear entropy stability and a summation-by-parts (SBP) framework are used to derive entropy stable interior interface coupling for the semi-discretized three-dimensional (3D) compressible Navier-Stokes equations. A complete semidiscrete entropy estimate for the interior domain is achieved combining a discontinuous entropy conservative operator of any order [1,2] with an entropy stable coupling condition for the inviscid terms, and a local discontinuous Galerkin (LDG) approach with an interior penalty (IP) procedure for the viscous terms. The viscous penalty contributions scale with the inverse of the Reynolds number (Re) so that for Re arrow right [infinity] their contributions vanish and only the entropy stable inviscid interface penalty term is recovered. This paper extends the interface couplings presented [1,2] and provides a simple and automatic way to compute the magnitude of the viscous IP term. The approach presented herein is compatible with any diagonal norm summation-by-parts (SBP) spatial operator, including finite element, finite volume, finite difference schemes and the class of high-order accurate methods which include the large family of discontinuous Galerkin discretizations and flux reconstruction schemes. |
doi_str_mv | 10.1016/j.jcp.2015.02.042 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701084896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999115001126</els_id><sourcerecordid>1701084896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-9441b34085f2c3c1c0579d2ec1d49e01f5e8419f383ea5c2e6ee067290679f0a3</originalsourceid><addsrcrecordid>eNp9kD1OxDAQhS0EEsvCAehS0iTMOD8biwoh_iQEBVBbxpmAl6ydtR0kOu7ADTkJXi01xcw033ua9xg7RigQsDldFks9FhywLoAXUPEdNkMQkPMFNrtsBsAxF0LgPjsIYQkAbV21M7a-tNG78TMLUb0MlHUmaGejsZObQmZsJN8rTSHTbhoHY1-z3vksvlEaT5R3ZkU2GGfVkJDV6CkEszG6Vx-G_M_X92N070lP60nFxIVDtterIdDR352z56vLp4ub_O7h-vbi_C7XZQkxF1WFL2WV3uy5LjVqqBei46SxqwQB9jW1FYq-bEtStebUEEGz4CIt0YMq5-xk6zt6t54oRLlK2WgYlKWUTeICENqqFU1CcYtq70Lw1MvRm5XynxJBbuqVS5nqlZt6JXCZ6k2as62GUoZNVBm0IaupM550lJ0z_6h_AVglhko</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701084896</pqid></control><display><type>article</type><title>Entropy stable discontinuous interfaces coupling for the three-dimensional compressible Navier–Stokes equations</title><source>Elsevier ScienceDirect Journals</source><creator>Parsani, Matteo ; Carpenter, Mark H. ; Nielsen, Eric J.</creator><creatorcontrib>Parsani, Matteo ; Carpenter, Mark H. ; Nielsen, Eric J.</creatorcontrib><description>Non-linear entropy stability and a summation-by-parts (SBP) framework are used to derive entropy stable interior interface coupling for the semi-discretized three-dimensional (3D) compressible Navier-Stokes equations. A complete semidiscrete entropy estimate for the interior domain is achieved combining a discontinuous entropy conservative operator of any order [1,2] with an entropy stable coupling condition for the inviscid terms, and a local discontinuous Galerkin (LDG) approach with an interior penalty (IP) procedure for the viscous terms. The viscous penalty contributions scale with the inverse of the Reynolds number (Re) so that for Re arrow right [infinity] their contributions vanish and only the entropy stable inviscid interface penalty term is recovered. This paper extends the interface couplings presented [1,2] and provides a simple and automatic way to compute the magnitude of the viscous IP term. The approach presented herein is compatible with any diagonal norm summation-by-parts (SBP) spatial operator, including finite element, finite volume, finite difference schemes and the class of high-order accurate methods which include the large family of discontinuous Galerkin discretizations and flux reconstruction schemes.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2015.02.042</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Compressibility ; Compressible Navier–Stokes equations ; Discontinuous interface coupling ; Entropy ; Entropy stability ; Galerkin methods ; High order discontinuous methods ; Joining ; Mathematical analysis ; Navier-Stokes equations ; Operators ; Reconstruction ; Summation-by-parts (SBP) operators ; Three dimensional</subject><ispartof>Journal of computational physics, 2015-06, Vol.290, p.132-138</ispartof><rights>2015 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-9441b34085f2c3c1c0579d2ec1d49e01f5e8419f383ea5c2e6ee067290679f0a3</citedby><cites>FETCH-LOGICAL-c330t-9441b34085f2c3c1c0579d2ec1d49e01f5e8419f383ea5c2e6ee067290679f0a3</cites><orcidid>0000-0001-7300-1280</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999115001126$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Parsani, Matteo</creatorcontrib><creatorcontrib>Carpenter, Mark H.</creatorcontrib><creatorcontrib>Nielsen, Eric J.</creatorcontrib><title>Entropy stable discontinuous interfaces coupling for the three-dimensional compressible Navier–Stokes equations</title><title>Journal of computational physics</title><description>Non-linear entropy stability and a summation-by-parts (SBP) framework are used to derive entropy stable interior interface coupling for the semi-discretized three-dimensional (3D) compressible Navier-Stokes equations. A complete semidiscrete entropy estimate for the interior domain is achieved combining a discontinuous entropy conservative operator of any order [1,2] with an entropy stable coupling condition for the inviscid terms, and a local discontinuous Galerkin (LDG) approach with an interior penalty (IP) procedure for the viscous terms. The viscous penalty contributions scale with the inverse of the Reynolds number (Re) so that for Re arrow right [infinity] their contributions vanish and only the entropy stable inviscid interface penalty term is recovered. This paper extends the interface couplings presented [1,2] and provides a simple and automatic way to compute the magnitude of the viscous IP term. The approach presented herein is compatible with any diagonal norm summation-by-parts (SBP) spatial operator, including finite element, finite volume, finite difference schemes and the class of high-order accurate methods which include the large family of discontinuous Galerkin discretizations and flux reconstruction schemes.</description><subject>Compressibility</subject><subject>Compressible Navier–Stokes equations</subject><subject>Discontinuous interface coupling</subject><subject>Entropy</subject><subject>Entropy stability</subject><subject>Galerkin methods</subject><subject>High order discontinuous methods</subject><subject>Joining</subject><subject>Mathematical analysis</subject><subject>Navier-Stokes equations</subject><subject>Operators</subject><subject>Reconstruction</subject><subject>Summation-by-parts (SBP) operators</subject><subject>Three dimensional</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD1OxDAQhS0EEsvCAehS0iTMOD8biwoh_iQEBVBbxpmAl6ydtR0kOu7ADTkJXi01xcw033ua9xg7RigQsDldFks9FhywLoAXUPEdNkMQkPMFNrtsBsAxF0LgPjsIYQkAbV21M7a-tNG78TMLUb0MlHUmaGejsZObQmZsJN8rTSHTbhoHY1-z3vksvlEaT5R3ZkU2GGfVkJDV6CkEszG6Vx-G_M_X92N070lP60nFxIVDtterIdDR352z56vLp4ub_O7h-vbi_C7XZQkxF1WFL2WV3uy5LjVqqBei46SxqwQB9jW1FYq-bEtStebUEEGz4CIt0YMq5-xk6zt6t54oRLlK2WgYlKWUTeICENqqFU1CcYtq70Lw1MvRm5XynxJBbuqVS5nqlZt6JXCZ6k2as62GUoZNVBm0IaupM550lJ0z_6h_AVglhko</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Parsani, Matteo</creator><creator>Carpenter, Mark H.</creator><creator>Nielsen, Eric J.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7300-1280</orcidid></search><sort><creationdate>20150601</creationdate><title>Entropy stable discontinuous interfaces coupling for the three-dimensional compressible Navier–Stokes equations</title><author>Parsani, Matteo ; Carpenter, Mark H. ; Nielsen, Eric J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-9441b34085f2c3c1c0579d2ec1d49e01f5e8419f383ea5c2e6ee067290679f0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Compressibility</topic><topic>Compressible Navier–Stokes equations</topic><topic>Discontinuous interface coupling</topic><topic>Entropy</topic><topic>Entropy stability</topic><topic>Galerkin methods</topic><topic>High order discontinuous methods</topic><topic>Joining</topic><topic>Mathematical analysis</topic><topic>Navier-Stokes equations</topic><topic>Operators</topic><topic>Reconstruction</topic><topic>Summation-by-parts (SBP) operators</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parsani, Matteo</creatorcontrib><creatorcontrib>Carpenter, Mark H.</creatorcontrib><creatorcontrib>Nielsen, Eric J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parsani, Matteo</au><au>Carpenter, Mark H.</au><au>Nielsen, Eric J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy stable discontinuous interfaces coupling for the three-dimensional compressible Navier–Stokes equations</atitle><jtitle>Journal of computational physics</jtitle><date>2015-06-01</date><risdate>2015</risdate><volume>290</volume><spage>132</spage><epage>138</epage><pages>132-138</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>Non-linear entropy stability and a summation-by-parts (SBP) framework are used to derive entropy stable interior interface coupling for the semi-discretized three-dimensional (3D) compressible Navier-Stokes equations. A complete semidiscrete entropy estimate for the interior domain is achieved combining a discontinuous entropy conservative operator of any order [1,2] with an entropy stable coupling condition for the inviscid terms, and a local discontinuous Galerkin (LDG) approach with an interior penalty (IP) procedure for the viscous terms. The viscous penalty contributions scale with the inverse of the Reynolds number (Re) so that for Re arrow right [infinity] their contributions vanish and only the entropy stable inviscid interface penalty term is recovered. This paper extends the interface couplings presented [1,2] and provides a simple and automatic way to compute the magnitude of the viscous IP term. The approach presented herein is compatible with any diagonal norm summation-by-parts (SBP) spatial operator, including finite element, finite volume, finite difference schemes and the class of high-order accurate methods which include the large family of discontinuous Galerkin discretizations and flux reconstruction schemes.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2015.02.042</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7300-1280</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2015-06, Vol.290, p.132-138 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_1701084896 |
source | Elsevier ScienceDirect Journals |
subjects | Compressibility Compressible Navier–Stokes equations Discontinuous interface coupling Entropy Entropy stability Galerkin methods High order discontinuous methods Joining Mathematical analysis Navier-Stokes equations Operators Reconstruction Summation-by-parts (SBP) operators Three dimensional |
title | Entropy stable discontinuous interfaces coupling for the three-dimensional compressible Navier–Stokes equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A35%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy%20stable%20discontinuous%20interfaces%20coupling%20for%20the%20three-dimensional%20compressible%20Navier%E2%80%93Stokes%20equations&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Parsani,%20Matteo&rft.date=2015-06-01&rft.volume=290&rft.spage=132&rft.epage=138&rft.pages=132-138&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2015.02.042&rft_dat=%3Cproquest_cross%3E1701084896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701084896&rft_id=info:pmid/&rft_els_id=S0021999115001126&rfr_iscdi=true |