Entropy stable discontinuous interfaces coupling for the three-dimensional compressible Navier–Stokes equations

Non-linear entropy stability and a summation-by-parts (SBP) framework are used to derive entropy stable interior interface coupling for the semi-discretized three-dimensional (3D) compressible Navier-Stokes equations. A complete semidiscrete entropy estimate for the interior domain is achieved combi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2015-06, Vol.290, p.132-138
Hauptverfasser: Parsani, Matteo, Carpenter, Mark H., Nielsen, Eric J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 138
container_issue
container_start_page 132
container_title Journal of computational physics
container_volume 290
creator Parsani, Matteo
Carpenter, Mark H.
Nielsen, Eric J.
description Non-linear entropy stability and a summation-by-parts (SBP) framework are used to derive entropy stable interior interface coupling for the semi-discretized three-dimensional (3D) compressible Navier-Stokes equations. A complete semidiscrete entropy estimate for the interior domain is achieved combining a discontinuous entropy conservative operator of any order [1,2] with an entropy stable coupling condition for the inviscid terms, and a local discontinuous Galerkin (LDG) approach with an interior penalty (IP) procedure for the viscous terms. The viscous penalty contributions scale with the inverse of the Reynolds number (Re) so that for Re arrow right [infinity] their contributions vanish and only the entropy stable inviscid interface penalty term is recovered. This paper extends the interface couplings presented [1,2] and provides a simple and automatic way to compute the magnitude of the viscous IP term. The approach presented herein is compatible with any diagonal norm summation-by-parts (SBP) spatial operator, including finite element, finite volume, finite difference schemes and the class of high-order accurate methods which include the large family of discontinuous Galerkin discretizations and flux reconstruction schemes.
doi_str_mv 10.1016/j.jcp.2015.02.042
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701084896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999115001126</els_id><sourcerecordid>1701084896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-9441b34085f2c3c1c0579d2ec1d49e01f5e8419f383ea5c2e6ee067290679f0a3</originalsourceid><addsrcrecordid>eNp9kD1OxDAQhS0EEsvCAehS0iTMOD8biwoh_iQEBVBbxpmAl6ydtR0kOu7ADTkJXi01xcw033ua9xg7RigQsDldFks9FhywLoAXUPEdNkMQkPMFNrtsBsAxF0LgPjsIYQkAbV21M7a-tNG78TMLUb0MlHUmaGejsZObQmZsJN8rTSHTbhoHY1-z3vksvlEaT5R3ZkU2GGfVkJDV6CkEszG6Vx-G_M_X92N070lP60nFxIVDtterIdDR352z56vLp4ub_O7h-vbi_C7XZQkxF1WFL2WV3uy5LjVqqBei46SxqwQB9jW1FYq-bEtStebUEEGz4CIt0YMq5-xk6zt6t54oRLlK2WgYlKWUTeICENqqFU1CcYtq70Lw1MvRm5XynxJBbuqVS5nqlZt6JXCZ6k2as62GUoZNVBm0IaupM550lJ0z_6h_AVglhko</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701084896</pqid></control><display><type>article</type><title>Entropy stable discontinuous interfaces coupling for the three-dimensional compressible Navier–Stokes equations</title><source>Elsevier ScienceDirect Journals</source><creator>Parsani, Matteo ; Carpenter, Mark H. ; Nielsen, Eric J.</creator><creatorcontrib>Parsani, Matteo ; Carpenter, Mark H. ; Nielsen, Eric J.</creatorcontrib><description>Non-linear entropy stability and a summation-by-parts (SBP) framework are used to derive entropy stable interior interface coupling for the semi-discretized three-dimensional (3D) compressible Navier-Stokes equations. A complete semidiscrete entropy estimate for the interior domain is achieved combining a discontinuous entropy conservative operator of any order [1,2] with an entropy stable coupling condition for the inviscid terms, and a local discontinuous Galerkin (LDG) approach with an interior penalty (IP) procedure for the viscous terms. The viscous penalty contributions scale with the inverse of the Reynolds number (Re) so that for Re arrow right [infinity] their contributions vanish and only the entropy stable inviscid interface penalty term is recovered. This paper extends the interface couplings presented [1,2] and provides a simple and automatic way to compute the magnitude of the viscous IP term. The approach presented herein is compatible with any diagonal norm summation-by-parts (SBP) spatial operator, including finite element, finite volume, finite difference schemes and the class of high-order accurate methods which include the large family of discontinuous Galerkin discretizations and flux reconstruction schemes.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2015.02.042</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Compressibility ; Compressible Navier–Stokes equations ; Discontinuous interface coupling ; Entropy ; Entropy stability ; Galerkin methods ; High order discontinuous methods ; Joining ; Mathematical analysis ; Navier-Stokes equations ; Operators ; Reconstruction ; Summation-by-parts (SBP) operators ; Three dimensional</subject><ispartof>Journal of computational physics, 2015-06, Vol.290, p.132-138</ispartof><rights>2015 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-9441b34085f2c3c1c0579d2ec1d49e01f5e8419f383ea5c2e6ee067290679f0a3</citedby><cites>FETCH-LOGICAL-c330t-9441b34085f2c3c1c0579d2ec1d49e01f5e8419f383ea5c2e6ee067290679f0a3</cites><orcidid>0000-0001-7300-1280</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999115001126$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Parsani, Matteo</creatorcontrib><creatorcontrib>Carpenter, Mark H.</creatorcontrib><creatorcontrib>Nielsen, Eric J.</creatorcontrib><title>Entropy stable discontinuous interfaces coupling for the three-dimensional compressible Navier–Stokes equations</title><title>Journal of computational physics</title><description>Non-linear entropy stability and a summation-by-parts (SBP) framework are used to derive entropy stable interior interface coupling for the semi-discretized three-dimensional (3D) compressible Navier-Stokes equations. A complete semidiscrete entropy estimate for the interior domain is achieved combining a discontinuous entropy conservative operator of any order [1,2] with an entropy stable coupling condition for the inviscid terms, and a local discontinuous Galerkin (LDG) approach with an interior penalty (IP) procedure for the viscous terms. The viscous penalty contributions scale with the inverse of the Reynolds number (Re) so that for Re arrow right [infinity] their contributions vanish and only the entropy stable inviscid interface penalty term is recovered. This paper extends the interface couplings presented [1,2] and provides a simple and automatic way to compute the magnitude of the viscous IP term. The approach presented herein is compatible with any diagonal norm summation-by-parts (SBP) spatial operator, including finite element, finite volume, finite difference schemes and the class of high-order accurate methods which include the large family of discontinuous Galerkin discretizations and flux reconstruction schemes.</description><subject>Compressibility</subject><subject>Compressible Navier–Stokes equations</subject><subject>Discontinuous interface coupling</subject><subject>Entropy</subject><subject>Entropy stability</subject><subject>Galerkin methods</subject><subject>High order discontinuous methods</subject><subject>Joining</subject><subject>Mathematical analysis</subject><subject>Navier-Stokes equations</subject><subject>Operators</subject><subject>Reconstruction</subject><subject>Summation-by-parts (SBP) operators</subject><subject>Three dimensional</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD1OxDAQhS0EEsvCAehS0iTMOD8biwoh_iQEBVBbxpmAl6ydtR0kOu7ADTkJXi01xcw033ua9xg7RigQsDldFks9FhywLoAXUPEdNkMQkPMFNrtsBsAxF0LgPjsIYQkAbV21M7a-tNG78TMLUb0MlHUmaGejsZObQmZsJN8rTSHTbhoHY1-z3vksvlEaT5R3ZkU2GGfVkJDV6CkEszG6Vx-G_M_X92N070lP60nFxIVDtterIdDR352z56vLp4ub_O7h-vbi_C7XZQkxF1WFL2WV3uy5LjVqqBei46SxqwQB9jW1FYq-bEtStebUEEGz4CIt0YMq5-xk6zt6t54oRLlK2WgYlKWUTeICENqqFU1CcYtq70Lw1MvRm5XynxJBbuqVS5nqlZt6JXCZ6k2as62GUoZNVBm0IaupM550lJ0z_6h_AVglhko</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Parsani, Matteo</creator><creator>Carpenter, Mark H.</creator><creator>Nielsen, Eric J.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7300-1280</orcidid></search><sort><creationdate>20150601</creationdate><title>Entropy stable discontinuous interfaces coupling for the three-dimensional compressible Navier–Stokes equations</title><author>Parsani, Matteo ; Carpenter, Mark H. ; Nielsen, Eric J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-9441b34085f2c3c1c0579d2ec1d49e01f5e8419f383ea5c2e6ee067290679f0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Compressibility</topic><topic>Compressible Navier–Stokes equations</topic><topic>Discontinuous interface coupling</topic><topic>Entropy</topic><topic>Entropy stability</topic><topic>Galerkin methods</topic><topic>High order discontinuous methods</topic><topic>Joining</topic><topic>Mathematical analysis</topic><topic>Navier-Stokes equations</topic><topic>Operators</topic><topic>Reconstruction</topic><topic>Summation-by-parts (SBP) operators</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parsani, Matteo</creatorcontrib><creatorcontrib>Carpenter, Mark H.</creatorcontrib><creatorcontrib>Nielsen, Eric J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parsani, Matteo</au><au>Carpenter, Mark H.</au><au>Nielsen, Eric J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy stable discontinuous interfaces coupling for the three-dimensional compressible Navier–Stokes equations</atitle><jtitle>Journal of computational physics</jtitle><date>2015-06-01</date><risdate>2015</risdate><volume>290</volume><spage>132</spage><epage>138</epage><pages>132-138</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>Non-linear entropy stability and a summation-by-parts (SBP) framework are used to derive entropy stable interior interface coupling for the semi-discretized three-dimensional (3D) compressible Navier-Stokes equations. A complete semidiscrete entropy estimate for the interior domain is achieved combining a discontinuous entropy conservative operator of any order [1,2] with an entropy stable coupling condition for the inviscid terms, and a local discontinuous Galerkin (LDG) approach with an interior penalty (IP) procedure for the viscous terms. The viscous penalty contributions scale with the inverse of the Reynolds number (Re) so that for Re arrow right [infinity] their contributions vanish and only the entropy stable inviscid interface penalty term is recovered. This paper extends the interface couplings presented [1,2] and provides a simple and automatic way to compute the magnitude of the viscous IP term. The approach presented herein is compatible with any diagonal norm summation-by-parts (SBP) spatial operator, including finite element, finite volume, finite difference schemes and the class of high-order accurate methods which include the large family of discontinuous Galerkin discretizations and flux reconstruction schemes.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2015.02.042</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7300-1280</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2015-06, Vol.290, p.132-138
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_1701084896
source Elsevier ScienceDirect Journals
subjects Compressibility
Compressible Navier–Stokes equations
Discontinuous interface coupling
Entropy
Entropy stability
Galerkin methods
High order discontinuous methods
Joining
Mathematical analysis
Navier-Stokes equations
Operators
Reconstruction
Summation-by-parts (SBP) operators
Three dimensional
title Entropy stable discontinuous interfaces coupling for the three-dimensional compressible Navier–Stokes equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A35%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy%20stable%20discontinuous%20interfaces%20coupling%20for%20the%20three-dimensional%20compressible%20Navier%E2%80%93Stokes%20equations&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Parsani,%20Matteo&rft.date=2015-06-01&rft.volume=290&rft.spage=132&rft.epage=138&rft.pages=132-138&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2015.02.042&rft_dat=%3Cproquest_cross%3E1701084896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701084896&rft_id=info:pmid/&rft_els_id=S0021999115001126&rfr_iscdi=true