Multi adaptive Kalman filtering with particle swarm optimization
The key problem of adaptive navigation is to determine the adaptive factors, in order to control the outlying effects of dynamic model errors. The optimal adaptive factors, however, are difficult to be obtained. On the base of multi adaptive robust Kalman filtering, a new kind of multi adaptive robu...
Gespeichert in:
Veröffentlicht in: | Geomatics and Information Science of Wuhan University 2013-02, Vol.38 (2), p.136-139 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 139 |
---|---|
container_issue | 2 |
container_start_page | 136 |
container_title | Geomatics and Information Science of Wuhan University |
container_volume | 38 |
creator | Nie, Jianliang Cheng, Chuanlu Guo, Chunxi Jiang, Guangwei |
description | The key problem of adaptive navigation is to determine the adaptive factors, in order to control the outlying effects of dynamic model errors. The optimal adaptive factors, however, are difficult to be obtained. On the base of multi adaptive robust Kalman filtering, a new kind of multi adaptive robust filtering, which uses particle swarm optimization to determine the factors, is proposed. The adaptive factors optimized by particle swarm optimization have higher reliability than those from current methods. First, multi adaptive factors are computed according to difference of the predicted state and calculated one; then particle swarm optimization is employed to look for more accurate factors if the reasonable fitting function is chosen. An actual dynamic GPS data set is employed to test the new adaptive filtering procedure. It is shown that multi adaptive robust filtering with particle swarm optimization can control the influence of outliers more efficiently, and improve the accuracy of navigation. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701076595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701076595</sourcerecordid><originalsourceid>FETCH-LOGICAL-p665-e07b61b0d4cafc5ede7096f021cb858996c015371fddc724610bb7a4c5f02af53</originalsourceid><addsrcrecordid>eNqNzMtKAzEUgOEsFCy175BlNwPJJDmZ7JTiDStuui8nNxvIXJxkLPj0FvQBXP2bj_-KrDho3nQdsBuyKSVZJkAK2bZqRe7ellwTRY9TTV-BvmLucaAx5RrmNHzQc6onOuFck8uBljPOPR0vtk_fWNM43JLriLmEzV_X5PD4cNg9N_v3p5fd_b6ZAFQTmLbALfPSYXQq-KCZgcha7mynOmPAMa6E5tF7p1sJnFmrUTp1MRiVWJPt73aax88llHrsU3EhZxzCuJQj14wzDcr8gwpppDCmVeIHzQVViQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349439925</pqid></control><display><type>article</type><title>Multi adaptive Kalman filtering with particle swarm optimization</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nie, Jianliang ; Cheng, Chuanlu ; Guo, Chunxi ; Jiang, Guangwei</creator><creatorcontrib>Nie, Jianliang ; Cheng, Chuanlu ; Guo, Chunxi ; Jiang, Guangwei</creatorcontrib><description>The key problem of adaptive navigation is to determine the adaptive factors, in order to control the outlying effects of dynamic model errors. The optimal adaptive factors, however, are difficult to be obtained. On the base of multi adaptive robust Kalman filtering, a new kind of multi adaptive robust filtering, which uses particle swarm optimization to determine the factors, is proposed. The adaptive factors optimized by particle swarm optimization have higher reliability than those from current methods. First, multi adaptive factors are computed according to difference of the predicted state and calculated one; then particle swarm optimization is employed to look for more accurate factors if the reasonable fitting function is chosen. An actual dynamic GPS data set is employed to test the new adaptive filtering procedure. It is shown that multi adaptive robust filtering with particle swarm optimization can control the influence of outliers more efficiently, and improve the accuracy of navigation.</description><identifier>ISSN: 1671-8860</identifier><language>eng</language><subject>Adaptive control systems ; Adaptive filters ; Filtering ; Filtration ; Kalman filtering ; Mathematical models ; Navigation ; Optimization</subject><ispartof>Geomatics and Information Science of Wuhan University, 2013-02, Vol.38 (2), p.136-139</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Nie, Jianliang</creatorcontrib><creatorcontrib>Cheng, Chuanlu</creatorcontrib><creatorcontrib>Guo, Chunxi</creatorcontrib><creatorcontrib>Jiang, Guangwei</creatorcontrib><title>Multi adaptive Kalman filtering with particle swarm optimization</title><title>Geomatics and Information Science of Wuhan University</title><description>The key problem of adaptive navigation is to determine the adaptive factors, in order to control the outlying effects of dynamic model errors. The optimal adaptive factors, however, are difficult to be obtained. On the base of multi adaptive robust Kalman filtering, a new kind of multi adaptive robust filtering, which uses particle swarm optimization to determine the factors, is proposed. The adaptive factors optimized by particle swarm optimization have higher reliability than those from current methods. First, multi adaptive factors are computed according to difference of the predicted state and calculated one; then particle swarm optimization is employed to look for more accurate factors if the reasonable fitting function is chosen. An actual dynamic GPS data set is employed to test the new adaptive filtering procedure. It is shown that multi adaptive robust filtering with particle swarm optimization can control the influence of outliers more efficiently, and improve the accuracy of navigation.</description><subject>Adaptive control systems</subject><subject>Adaptive filters</subject><subject>Filtering</subject><subject>Filtration</subject><subject>Kalman filtering</subject><subject>Mathematical models</subject><subject>Navigation</subject><subject>Optimization</subject><issn>1671-8860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNzMtKAzEUgOEsFCy175BlNwPJJDmZ7JTiDStuui8nNxvIXJxkLPj0FvQBXP2bj_-KrDho3nQdsBuyKSVZJkAK2bZqRe7ellwTRY9TTV-BvmLucaAx5RrmNHzQc6onOuFck8uBljPOPR0vtk_fWNM43JLriLmEzV_X5PD4cNg9N_v3p5fd_b6ZAFQTmLbALfPSYXQq-KCZgcha7mynOmPAMa6E5tF7p1sJnFmrUTp1MRiVWJPt73aax88llHrsU3EhZxzCuJQj14wzDcr8gwpppDCmVeIHzQVViQ</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Nie, Jianliang</creator><creator>Cheng, Chuanlu</creator><creator>Guo, Chunxi</creator><creator>Jiang, Guangwei</creator><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130201</creationdate><title>Multi adaptive Kalman filtering with particle swarm optimization</title><author>Nie, Jianliang ; Cheng, Chuanlu ; Guo, Chunxi ; Jiang, Guangwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p665-e07b61b0d4cafc5ede7096f021cb858996c015371fddc724610bb7a4c5f02af53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptive control systems</topic><topic>Adaptive filters</topic><topic>Filtering</topic><topic>Filtration</topic><topic>Kalman filtering</topic><topic>Mathematical models</topic><topic>Navigation</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Nie, Jianliang</creatorcontrib><creatorcontrib>Cheng, Chuanlu</creatorcontrib><creatorcontrib>Guo, Chunxi</creatorcontrib><creatorcontrib>Jiang, Guangwei</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geomatics and Information Science of Wuhan University</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Jianliang</au><au>Cheng, Chuanlu</au><au>Guo, Chunxi</au><au>Jiang, Guangwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi adaptive Kalman filtering with particle swarm optimization</atitle><jtitle>Geomatics and Information Science of Wuhan University</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>38</volume><issue>2</issue><spage>136</spage><epage>139</epage><pages>136-139</pages><issn>1671-8860</issn><abstract>The key problem of adaptive navigation is to determine the adaptive factors, in order to control the outlying effects of dynamic model errors. The optimal adaptive factors, however, are difficult to be obtained. On the base of multi adaptive robust Kalman filtering, a new kind of multi adaptive robust filtering, which uses particle swarm optimization to determine the factors, is proposed. The adaptive factors optimized by particle swarm optimization have higher reliability than those from current methods. First, multi adaptive factors are computed according to difference of the predicted state and calculated one; then particle swarm optimization is employed to look for more accurate factors if the reasonable fitting function is chosen. An actual dynamic GPS data set is employed to test the new adaptive filtering procedure. It is shown that multi adaptive robust filtering with particle swarm optimization can control the influence of outliers more efficiently, and improve the accuracy of navigation.</abstract><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1671-8860 |
ispartof | Geomatics and Information Science of Wuhan University, 2013-02, Vol.38 (2), p.136-139 |
issn | 1671-8860 |
language | eng |
recordid | cdi_proquest_miscellaneous_1701076595 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Adaptive control systems Adaptive filters Filtering Filtration Kalman filtering Mathematical models Navigation Optimization |
title | Multi adaptive Kalman filtering with particle swarm optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A56%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%20adaptive%20Kalman%20filtering%20with%20particle%20swarm%20optimization&rft.jtitle=Geomatics%20and%20Information%20Science%20of%20Wuhan%20University&rft.au=Nie,%20Jianliang&rft.date=2013-02-01&rft.volume=38&rft.issue=2&rft.spage=136&rft.epage=139&rft.pages=136-139&rft.issn=1671-8860&rft_id=info:doi/&rft_dat=%3Cproquest%3E1701076595%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1349439925&rft_id=info:pmid/&rfr_iscdi=true |