Multi adaptive Kalman filtering with particle swarm optimization

The key problem of adaptive navigation is to determine the adaptive factors, in order to control the outlying effects of dynamic model errors. The optimal adaptive factors, however, are difficult to be obtained. On the base of multi adaptive robust Kalman filtering, a new kind of multi adaptive robu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geomatics and Information Science of Wuhan University 2013-02, Vol.38 (2), p.136-139
Hauptverfasser: Nie, Jianliang, Cheng, Chuanlu, Guo, Chunxi, Jiang, Guangwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 139
container_issue 2
container_start_page 136
container_title Geomatics and Information Science of Wuhan University
container_volume 38
creator Nie, Jianliang
Cheng, Chuanlu
Guo, Chunxi
Jiang, Guangwei
description The key problem of adaptive navigation is to determine the adaptive factors, in order to control the outlying effects of dynamic model errors. The optimal adaptive factors, however, are difficult to be obtained. On the base of multi adaptive robust Kalman filtering, a new kind of multi adaptive robust filtering, which uses particle swarm optimization to determine the factors, is proposed. The adaptive factors optimized by particle swarm optimization have higher reliability than those from current methods. First, multi adaptive factors are computed according to difference of the predicted state and calculated one; then particle swarm optimization is employed to look for more accurate factors if the reasonable fitting function is chosen. An actual dynamic GPS data set is employed to test the new adaptive filtering procedure. It is shown that multi adaptive robust filtering with particle swarm optimization can control the influence of outliers more efficiently, and improve the accuracy of navigation.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701076595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701076595</sourcerecordid><originalsourceid>FETCH-LOGICAL-p665-e07b61b0d4cafc5ede7096f021cb858996c015371fddc724610bb7a4c5f02af53</originalsourceid><addsrcrecordid>eNqNzMtKAzEUgOEsFCy175BlNwPJJDmZ7JTiDStuui8nNxvIXJxkLPj0FvQBXP2bj_-KrDho3nQdsBuyKSVZJkAK2bZqRe7ellwTRY9TTV-BvmLucaAx5RrmNHzQc6onOuFck8uBljPOPR0vtk_fWNM43JLriLmEzV_X5PD4cNg9N_v3p5fd_b6ZAFQTmLbALfPSYXQq-KCZgcha7mynOmPAMa6E5tF7p1sJnFmrUTp1MRiVWJPt73aax88llHrsU3EhZxzCuJQj14wzDcr8gwpppDCmVeIHzQVViQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349439925</pqid></control><display><type>article</type><title>Multi adaptive Kalman filtering with particle swarm optimization</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nie, Jianliang ; Cheng, Chuanlu ; Guo, Chunxi ; Jiang, Guangwei</creator><creatorcontrib>Nie, Jianliang ; Cheng, Chuanlu ; Guo, Chunxi ; Jiang, Guangwei</creatorcontrib><description>The key problem of adaptive navigation is to determine the adaptive factors, in order to control the outlying effects of dynamic model errors. The optimal adaptive factors, however, are difficult to be obtained. On the base of multi adaptive robust Kalman filtering, a new kind of multi adaptive robust filtering, which uses particle swarm optimization to determine the factors, is proposed. The adaptive factors optimized by particle swarm optimization have higher reliability than those from current methods. First, multi adaptive factors are computed according to difference of the predicted state and calculated one; then particle swarm optimization is employed to look for more accurate factors if the reasonable fitting function is chosen. An actual dynamic GPS data set is employed to test the new adaptive filtering procedure. It is shown that multi adaptive robust filtering with particle swarm optimization can control the influence of outliers more efficiently, and improve the accuracy of navigation.</description><identifier>ISSN: 1671-8860</identifier><language>eng</language><subject>Adaptive control systems ; Adaptive filters ; Filtering ; Filtration ; Kalman filtering ; Mathematical models ; Navigation ; Optimization</subject><ispartof>Geomatics and Information Science of Wuhan University, 2013-02, Vol.38 (2), p.136-139</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Nie, Jianliang</creatorcontrib><creatorcontrib>Cheng, Chuanlu</creatorcontrib><creatorcontrib>Guo, Chunxi</creatorcontrib><creatorcontrib>Jiang, Guangwei</creatorcontrib><title>Multi adaptive Kalman filtering with particle swarm optimization</title><title>Geomatics and Information Science of Wuhan University</title><description>The key problem of adaptive navigation is to determine the adaptive factors, in order to control the outlying effects of dynamic model errors. The optimal adaptive factors, however, are difficult to be obtained. On the base of multi adaptive robust Kalman filtering, a new kind of multi adaptive robust filtering, which uses particle swarm optimization to determine the factors, is proposed. The adaptive factors optimized by particle swarm optimization have higher reliability than those from current methods. First, multi adaptive factors are computed according to difference of the predicted state and calculated one; then particle swarm optimization is employed to look for more accurate factors if the reasonable fitting function is chosen. An actual dynamic GPS data set is employed to test the new adaptive filtering procedure. It is shown that multi adaptive robust filtering with particle swarm optimization can control the influence of outliers more efficiently, and improve the accuracy of navigation.</description><subject>Adaptive control systems</subject><subject>Adaptive filters</subject><subject>Filtering</subject><subject>Filtration</subject><subject>Kalman filtering</subject><subject>Mathematical models</subject><subject>Navigation</subject><subject>Optimization</subject><issn>1671-8860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNzMtKAzEUgOEsFCy175BlNwPJJDmZ7JTiDStuui8nNxvIXJxkLPj0FvQBXP2bj_-KrDho3nQdsBuyKSVZJkAK2bZqRe7ellwTRY9TTV-BvmLucaAx5RrmNHzQc6onOuFck8uBljPOPR0vtk_fWNM43JLriLmEzV_X5PD4cNg9N_v3p5fd_b6ZAFQTmLbALfPSYXQq-KCZgcha7mynOmPAMa6E5tF7p1sJnFmrUTp1MRiVWJPt73aax88llHrsU3EhZxzCuJQj14wzDcr8gwpppDCmVeIHzQVViQ</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Nie, Jianliang</creator><creator>Cheng, Chuanlu</creator><creator>Guo, Chunxi</creator><creator>Jiang, Guangwei</creator><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130201</creationdate><title>Multi adaptive Kalman filtering with particle swarm optimization</title><author>Nie, Jianliang ; Cheng, Chuanlu ; Guo, Chunxi ; Jiang, Guangwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p665-e07b61b0d4cafc5ede7096f021cb858996c015371fddc724610bb7a4c5f02af53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptive control systems</topic><topic>Adaptive filters</topic><topic>Filtering</topic><topic>Filtration</topic><topic>Kalman filtering</topic><topic>Mathematical models</topic><topic>Navigation</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Nie, Jianliang</creatorcontrib><creatorcontrib>Cheng, Chuanlu</creatorcontrib><creatorcontrib>Guo, Chunxi</creatorcontrib><creatorcontrib>Jiang, Guangwei</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geomatics and Information Science of Wuhan University</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Jianliang</au><au>Cheng, Chuanlu</au><au>Guo, Chunxi</au><au>Jiang, Guangwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi adaptive Kalman filtering with particle swarm optimization</atitle><jtitle>Geomatics and Information Science of Wuhan University</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>38</volume><issue>2</issue><spage>136</spage><epage>139</epage><pages>136-139</pages><issn>1671-8860</issn><abstract>The key problem of adaptive navigation is to determine the adaptive factors, in order to control the outlying effects of dynamic model errors. The optimal adaptive factors, however, are difficult to be obtained. On the base of multi adaptive robust Kalman filtering, a new kind of multi adaptive robust filtering, which uses particle swarm optimization to determine the factors, is proposed. The adaptive factors optimized by particle swarm optimization have higher reliability than those from current methods. First, multi adaptive factors are computed according to difference of the predicted state and calculated one; then particle swarm optimization is employed to look for more accurate factors if the reasonable fitting function is chosen. An actual dynamic GPS data set is employed to test the new adaptive filtering procedure. It is shown that multi adaptive robust filtering with particle swarm optimization can control the influence of outliers more efficiently, and improve the accuracy of navigation.</abstract><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1671-8860
ispartof Geomatics and Information Science of Wuhan University, 2013-02, Vol.38 (2), p.136-139
issn 1671-8860
language eng
recordid cdi_proquest_miscellaneous_1701076595
source EZB-FREE-00999 freely available EZB journals
subjects Adaptive control systems
Adaptive filters
Filtering
Filtration
Kalman filtering
Mathematical models
Navigation
Optimization
title Multi adaptive Kalman filtering with particle swarm optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A56%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%20adaptive%20Kalman%20filtering%20with%20particle%20swarm%20optimization&rft.jtitle=Geomatics%20and%20Information%20Science%20of%20Wuhan%20University&rft.au=Nie,%20Jianliang&rft.date=2013-02-01&rft.volume=38&rft.issue=2&rft.spage=136&rft.epage=139&rft.pages=136-139&rft.issn=1671-8860&rft_id=info:doi/&rft_dat=%3Cproquest%3E1701076595%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1349439925&rft_id=info:pmid/&rfr_iscdi=true