Thunderstorm Observation by Radar (ThOR): An Algorithm to Develop a Climatology of Thunderstorms
The Thunderstorm Observation by Radar (ThOR) algorithm is an objective and tunable Lagrangian approach to cataloging thunderstorms. ThOR uses observations from multiple sensors (principally multisite surveillance radar data and cloud-to-ground lightning) along with established techniques for fusing...
Gespeichert in:
Veröffentlicht in: | Journal of atmospheric and oceanic technology 2015-05, Vol.32 (5), p.961-981 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 981 |
---|---|
container_issue | 5 |
container_start_page | 961 |
container_title | Journal of atmospheric and oceanic technology |
container_volume | 32 |
creator | Houston, Adam L Lock, Noah A Lahowetz, Jamie Barjenbruch, Brian L Limpert, George Oppermann, Cody |
description | The Thunderstorm Observation by Radar (ThOR) algorithm is an objective and tunable Lagrangian approach to cataloging thunderstorms. ThOR uses observations from multiple sensors (principally multisite surveillance radar data and cloud-to-ground lightning) along with established techniques for fusing multisite radar data and identifying spatially coherent regions of radar reflectivity (clusters) that are subsequently tracked using a new tracking scheme. The main innovation of the tracking algorithm is that, by operating offline, the full data record is available, not just previous cluster positions, so all possible combinations of object sequences can be developed using all observed object positions. In contrast to Eulerian methods reliant on thunder reports, ThOR is capable of cataloging nearly every thunderstorm that occurs over regional-scale and continental United States (CONUS)-scale domains, thereby enabling analysis of internal properties and trends of thunderstorms. ThOR is verified against 166 manually analyzed cluster tracks and is also verified using descriptive statistics applied to a large ( similar to 35 000 tracks) sample. Verification also relied on a benchmark tracking algorithm that provides context for the verification statistics. ThOR tracks are shown to match the manual tracks slightly better than the benchmark tracks. Moreover, the descriptive statistics of the ThOR tracks are nearly identical to those of the manual tracks, suggesting good agreement. When the descriptive statistics were applied to the similar to 35 000-track dataset, ThOR tracking produces longer (statistically significant), straighter, and more coherent tracks than those of the benchmark algorithm. Qualitative assessment of ThOR performance is enabled through application to a multiday thunderstorm event and comparison to the behavior of the Storm Cell Identification and Tracking (SCIT) algorithm. |
doi_str_mv | 10.1175/JTECH-D-14-00118.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701074837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3694143001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-528f4a39b276d43c472e6bffcd43bed801e204ba16674e68e4dc029f3a8e31ba3</originalsourceid><addsrcrecordid>eNqFkU1LAzEQhoMoWKt_wFPASz1szSTZJOuttPWLQqHUc8zuZvvBdlOT3UL_vdvWg3jQ0zDw8PDOvAjdAukDyPjhbT4evkSjCHhECIDqwxnqQExJRDgV56hDJEsiEkt6ia5CWJOWYiA66GO-bKrc-lA7v8HTNFi_M_XKVTjd45nJjce9-XI6u3_EgwoPyoXzq3q5wbXDI7uzpdtig4flamNqV7rFHrsC_1SGa3RRmDLYm-_ZRe9P43kbdjJ9fh0OJlHGgdVRTFXBDUtSKkXOWcYltSItiqxdUpsrApYSnhoQQnIrlOV5RmhSMKMsg9SwLuqdvFvvPhsbar1ZhcyWpamsa4IGSYBIrpj8HxUJ0IQkLG7Ru1_o2jW-ag_RVFFBuYSE_kWBUFQpIHBw0ROVeReCt4Xe-vZvfq-B6EOL-tiiHmng-tiiBvYF2-qOMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1682881015</pqid></control><display><type>article</type><title>Thunderstorm Observation by Radar (ThOR): An Algorithm to Develop a Climatology of Thunderstorms</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Houston, Adam L ; Lock, Noah A ; Lahowetz, Jamie ; Barjenbruch, Brian L ; Limpert, George ; Oppermann, Cody</creator><creatorcontrib>Houston, Adam L ; Lock, Noah A ; Lahowetz, Jamie ; Barjenbruch, Brian L ; Limpert, George ; Oppermann, Cody</creatorcontrib><description>The Thunderstorm Observation by Radar (ThOR) algorithm is an objective and tunable Lagrangian approach to cataloging thunderstorms. ThOR uses observations from multiple sensors (principally multisite surveillance radar data and cloud-to-ground lightning) along with established techniques for fusing multisite radar data and identifying spatially coherent regions of radar reflectivity (clusters) that are subsequently tracked using a new tracking scheme. The main innovation of the tracking algorithm is that, by operating offline, the full data record is available, not just previous cluster positions, so all possible combinations of object sequences can be developed using all observed object positions. In contrast to Eulerian methods reliant on thunder reports, ThOR is capable of cataloging nearly every thunderstorm that occurs over regional-scale and continental United States (CONUS)-scale domains, thereby enabling analysis of internal properties and trends of thunderstorms. ThOR is verified against 166 manually analyzed cluster tracks and is also verified using descriptive statistics applied to a large ( similar to 35 000 tracks) sample. Verification also relied on a benchmark tracking algorithm that provides context for the verification statistics. ThOR tracks are shown to match the manual tracks slightly better than the benchmark tracks. Moreover, the descriptive statistics of the ThOR tracks are nearly identical to those of the manual tracks, suggesting good agreement. When the descriptive statistics were applied to the similar to 35 000-track dataset, ThOR tracking produces longer (statistically significant), straighter, and more coherent tracks than those of the benchmark algorithm. Qualitative assessment of ThOR performance is enabled through application to a multiday thunderstorm event and comparison to the behavior of the Storm Cell Identification and Tracking (SCIT) algorithm.</description><identifier>ISSN: 0739-0572</identifier><identifier>EISSN: 1520-0426</identifier><identifier>DOI: 10.1175/JTECH-D-14-00118.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Algorithms ; Atmospheric sciences ; Benchmarking ; Benchmarks ; Climate ; Climate change ; Climatology ; Cloud-to-ground lightning ; Clusters ; Datasets ; Eulerian current measurement ; Lightning ; Manuals ; Precipitation ; Radar ; Radar data ; Radar reflectivity ; Reflectance ; Statistical analysis ; Statistical methods ; Statistics ; Surveillance ; Surveillance radar ; Thunderstorms ; Tracking ; Tracking (position) ; Trends ; Verification ; Weather</subject><ispartof>Journal of atmospheric and oceanic technology, 2015-05, Vol.32 (5), p.961-981</ispartof><rights>Copyright American Meteorological Society May 2015</rights><rights>Copyright American Meteorological Society 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-528f4a39b276d43c472e6bffcd43bed801e204ba16674e68e4dc029f3a8e31ba3</citedby><cites>FETCH-LOGICAL-c413t-528f4a39b276d43c472e6bffcd43bed801e204ba16674e68e4dc029f3a8e31ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3667,27903,27904</link.rule.ids></links><search><creatorcontrib>Houston, Adam L</creatorcontrib><creatorcontrib>Lock, Noah A</creatorcontrib><creatorcontrib>Lahowetz, Jamie</creatorcontrib><creatorcontrib>Barjenbruch, Brian L</creatorcontrib><creatorcontrib>Limpert, George</creatorcontrib><creatorcontrib>Oppermann, Cody</creatorcontrib><title>Thunderstorm Observation by Radar (ThOR): An Algorithm to Develop a Climatology of Thunderstorms</title><title>Journal of atmospheric and oceanic technology</title><description>The Thunderstorm Observation by Radar (ThOR) algorithm is an objective and tunable Lagrangian approach to cataloging thunderstorms. ThOR uses observations from multiple sensors (principally multisite surveillance radar data and cloud-to-ground lightning) along with established techniques for fusing multisite radar data and identifying spatially coherent regions of radar reflectivity (clusters) that are subsequently tracked using a new tracking scheme. The main innovation of the tracking algorithm is that, by operating offline, the full data record is available, not just previous cluster positions, so all possible combinations of object sequences can be developed using all observed object positions. In contrast to Eulerian methods reliant on thunder reports, ThOR is capable of cataloging nearly every thunderstorm that occurs over regional-scale and continental United States (CONUS)-scale domains, thereby enabling analysis of internal properties and trends of thunderstorms. ThOR is verified against 166 manually analyzed cluster tracks and is also verified using descriptive statistics applied to a large ( similar to 35 000 tracks) sample. Verification also relied on a benchmark tracking algorithm that provides context for the verification statistics. ThOR tracks are shown to match the manual tracks slightly better than the benchmark tracks. Moreover, the descriptive statistics of the ThOR tracks are nearly identical to those of the manual tracks, suggesting good agreement. When the descriptive statistics were applied to the similar to 35 000-track dataset, ThOR tracking produces longer (statistically significant), straighter, and more coherent tracks than those of the benchmark algorithm. Qualitative assessment of ThOR performance is enabled through application to a multiday thunderstorm event and comparison to the behavior of the Storm Cell Identification and Tracking (SCIT) algorithm.</description><subject>Algorithms</subject><subject>Atmospheric sciences</subject><subject>Benchmarking</subject><subject>Benchmarks</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climatology</subject><subject>Cloud-to-ground lightning</subject><subject>Clusters</subject><subject>Datasets</subject><subject>Eulerian current measurement</subject><subject>Lightning</subject><subject>Manuals</subject><subject>Precipitation</subject><subject>Radar</subject><subject>Radar data</subject><subject>Radar reflectivity</subject><subject>Reflectance</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Surveillance</subject><subject>Surveillance radar</subject><subject>Thunderstorms</subject><subject>Tracking</subject><subject>Tracking (position)</subject><subject>Trends</subject><subject>Verification</subject><subject>Weather</subject><issn>0739-0572</issn><issn>1520-0426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU1LAzEQhoMoWKt_wFPASz1szSTZJOuttPWLQqHUc8zuZvvBdlOT3UL_vdvWg3jQ0zDw8PDOvAjdAukDyPjhbT4evkSjCHhECIDqwxnqQExJRDgV56hDJEsiEkt6ia5CWJOWYiA66GO-bKrc-lA7v8HTNFi_M_XKVTjd45nJjce9-XI6u3_EgwoPyoXzq3q5wbXDI7uzpdtig4flamNqV7rFHrsC_1SGa3RRmDLYm-_ZRe9P43kbdjJ9fh0OJlHGgdVRTFXBDUtSKkXOWcYltSItiqxdUpsrApYSnhoQQnIrlOV5RmhSMKMsg9SwLuqdvFvvPhsbar1ZhcyWpamsa4IGSYBIrpj8HxUJ0IQkLG7Ru1_o2jW-ag_RVFFBuYSE_kWBUFQpIHBw0ROVeReCt4Xe-vZvfq-B6EOL-tiiHmng-tiiBvYF2-qOMA</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Houston, Adam L</creator><creator>Lock, Noah A</creator><creator>Lahowetz, Jamie</creator><creator>Barjenbruch, Brian L</creator><creator>Limpert, George</creator><creator>Oppermann, Cody</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>7SP</scope></search><sort><creationdate>20150501</creationdate><title>Thunderstorm Observation by Radar (ThOR): An Algorithm to Develop a Climatology of Thunderstorms</title><author>Houston, Adam L ; Lock, Noah A ; Lahowetz, Jamie ; Barjenbruch, Brian L ; Limpert, George ; Oppermann, Cody</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-528f4a39b276d43c472e6bffcd43bed801e204ba16674e68e4dc029f3a8e31ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Atmospheric sciences</topic><topic>Benchmarking</topic><topic>Benchmarks</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climatology</topic><topic>Cloud-to-ground lightning</topic><topic>Clusters</topic><topic>Datasets</topic><topic>Eulerian current measurement</topic><topic>Lightning</topic><topic>Manuals</topic><topic>Precipitation</topic><topic>Radar</topic><topic>Radar data</topic><topic>Radar reflectivity</topic><topic>Reflectance</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Surveillance</topic><topic>Surveillance radar</topic><topic>Thunderstorms</topic><topic>Tracking</topic><topic>Tracking (position)</topic><topic>Trends</topic><topic>Verification</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Houston, Adam L</creatorcontrib><creatorcontrib>Lock, Noah A</creatorcontrib><creatorcontrib>Lahowetz, Jamie</creatorcontrib><creatorcontrib>Barjenbruch, Brian L</creatorcontrib><creatorcontrib>Limpert, George</creatorcontrib><creatorcontrib>Oppermann, Cody</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Electronics & Communications Abstracts</collection><jtitle>Journal of atmospheric and oceanic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Houston, Adam L</au><au>Lock, Noah A</au><au>Lahowetz, Jamie</au><au>Barjenbruch, Brian L</au><au>Limpert, George</au><au>Oppermann, Cody</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thunderstorm Observation by Radar (ThOR): An Algorithm to Develop a Climatology of Thunderstorms</atitle><jtitle>Journal of atmospheric and oceanic technology</jtitle><date>2015-05-01</date><risdate>2015</risdate><volume>32</volume><issue>5</issue><spage>961</spage><epage>981</epage><pages>961-981</pages><issn>0739-0572</issn><eissn>1520-0426</eissn><abstract>The Thunderstorm Observation by Radar (ThOR) algorithm is an objective and tunable Lagrangian approach to cataloging thunderstorms. ThOR uses observations from multiple sensors (principally multisite surveillance radar data and cloud-to-ground lightning) along with established techniques for fusing multisite radar data and identifying spatially coherent regions of radar reflectivity (clusters) that are subsequently tracked using a new tracking scheme. The main innovation of the tracking algorithm is that, by operating offline, the full data record is available, not just previous cluster positions, so all possible combinations of object sequences can be developed using all observed object positions. In contrast to Eulerian methods reliant on thunder reports, ThOR is capable of cataloging nearly every thunderstorm that occurs over regional-scale and continental United States (CONUS)-scale domains, thereby enabling analysis of internal properties and trends of thunderstorms. ThOR is verified against 166 manually analyzed cluster tracks and is also verified using descriptive statistics applied to a large ( similar to 35 000 tracks) sample. Verification also relied on a benchmark tracking algorithm that provides context for the verification statistics. ThOR tracks are shown to match the manual tracks slightly better than the benchmark tracks. Moreover, the descriptive statistics of the ThOR tracks are nearly identical to those of the manual tracks, suggesting good agreement. When the descriptive statistics were applied to the similar to 35 000-track dataset, ThOR tracking produces longer (statistically significant), straighter, and more coherent tracks than those of the benchmark algorithm. Qualitative assessment of ThOR performance is enabled through application to a multiday thunderstorm event and comparison to the behavior of the Storm Cell Identification and Tracking (SCIT) algorithm.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JTECH-D-14-00118.1</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0739-0572 |
ispartof | Journal of atmospheric and oceanic technology, 2015-05, Vol.32 (5), p.961-981 |
issn | 0739-0572 1520-0426 |
language | eng |
recordid | cdi_proquest_miscellaneous_1701074837 |
source | American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Algorithms Atmospheric sciences Benchmarking Benchmarks Climate Climate change Climatology Cloud-to-ground lightning Clusters Datasets Eulerian current measurement Lightning Manuals Precipitation Radar Radar data Radar reflectivity Reflectance Statistical analysis Statistical methods Statistics Surveillance Surveillance radar Thunderstorms Tracking Tracking (position) Trends Verification Weather |
title | Thunderstorm Observation by Radar (ThOR): An Algorithm to Develop a Climatology of Thunderstorms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A42%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thunderstorm%20Observation%20by%20Radar%20(ThOR):%20An%20Algorithm%20to%20Develop%20a%20Climatology%20of%20Thunderstorms&rft.jtitle=Journal%20of%20atmospheric%20and%20oceanic%20technology&rft.au=Houston,%20Adam%20L&rft.date=2015-05-01&rft.volume=32&rft.issue=5&rft.spage=961&rft.epage=981&rft.pages=961-981&rft.issn=0739-0572&rft.eissn=1520-0426&rft_id=info:doi/10.1175/JTECH-D-14-00118.1&rft_dat=%3Cproquest_cross%3E3694143001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1682881015&rft_id=info:pmid/&rfr_iscdi=true |