A preconditioned numerical solver for stiff nonlinear reaction–diffusion equations with fractional Laplacians that avoids dense matrices
The numerical solution of fractional partial differential equations poses significant computational challenges in regard to efficiency as a result of the spatial nonlocality of the fractional differential operators. The dense coefficient matrices that arise from spatial discretisation of these opera...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2015-04, Vol.287, p.254-268 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 268 |
---|---|
container_issue | |
container_start_page | 254 |
container_title | Journal of computational physics |
container_volume | 287 |
creator | Simmons, Alex Yang, Qianqian Moroney, Timothy |
description | The numerical solution of fractional partial differential equations poses significant computational challenges in regard to efficiency as a result of the spatial nonlocality of the fractional differential operators. The dense coefficient matrices that arise from spatial discretisation of these operators mean that even one-dimensional problems can be difficult to solve using standard methods on grids comprising thousands of nodes or more. In this work we address this issue of efficiency for one-dimensional, nonlinear space-fractional reaction–diffusion equations with fractional Laplacian operators.
We apply variable-order, variable-stepsize backward differentiation formulas in a Jacobian-free Newton–Krylov framework to advance the solution in time. A key advantage of this approach is the elimination of any requirement to form the dense matrix representation of the fractional Laplacian operator. We show how a banded approximation to this matrix, which can be formed and factorised efficiently, can be used as part of an effective preconditioner that accelerates convergence of the Krylov subspace iterative solver. Our approach also captures the full contribution from the nonlinear reaction term in the preconditioner, which is crucial for problems that exhibit stiff reactions. Numerical examples are presented to illustrate the overall effectiveness of the solver. |
doi_str_mv | 10.1016/j.jcp.2015.02.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701074437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999115000741</els_id><sourcerecordid>1701074437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-3fc5dd2a5bfe08cfdff7cb4c28b209f9db8e58dd301bdfcde228d662ec1bc6ec3</originalsourceid><addsrcrecordid>eNp9kLtuHDEMRYXAAbLe5APSqUwzE0qz80Iqw3AewAJunFrQUBSsxaw0ljQbpHOdNn-YL4kW69oVCfJeXvAw9lFALUB0nw_1AZdagmhrkDUI-YZtBIxQyV50V2wDIEU1jqN4x65TOgDA0O6GDftzw5dIGLxx2QVPhvv1SNGhnnkK84kityHylJ213Ac_O0868kgaz_p_z39N2ayp9JyeVn0eJv7L5Udu40VTLu31Mmt0uqzyo85cn4IziRvyifhR55JH6T17a_Wc6MNL3bKfX-8ebr9X-_tvP25v9hU2fZOrxmJrjNTtZAkGtMbaHqcdymGSMNrRTAO1gzENiMlYNCTlYLpOEooJO8Jmyz5d7i4xPK2Usjq6hDTP2lNYkxI9COh3u5K2ZeIixRhSimTVEt1Rx99KgDpzVwdVuKszdwVSFe7F8-XiofLDyVFUCR15JOMK6KxMcK-4_wPQX5Ig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701074437</pqid></control><display><type>article</type><title>A preconditioned numerical solver for stiff nonlinear reaction–diffusion equations with fractional Laplacians that avoids dense matrices</title><source>Elsevier ScienceDirect Journals</source><creator>Simmons, Alex ; Yang, Qianqian ; Moroney, Timothy</creator><creatorcontrib>Simmons, Alex ; Yang, Qianqian ; Moroney, Timothy</creatorcontrib><description>The numerical solution of fractional partial differential equations poses significant computational challenges in regard to efficiency as a result of the spatial nonlocality of the fractional differential operators. The dense coefficient matrices that arise from spatial discretisation of these operators mean that even one-dimensional problems can be difficult to solve using standard methods on grids comprising thousands of nodes or more. In this work we address this issue of efficiency for one-dimensional, nonlinear space-fractional reaction–diffusion equations with fractional Laplacian operators.
We apply variable-order, variable-stepsize backward differentiation formulas in a Jacobian-free Newton–Krylov framework to advance the solution in time. A key advantage of this approach is the elimination of any requirement to form the dense matrix representation of the fractional Laplacian operator. We show how a banded approximation to this matrix, which can be formed and factorised efficiently, can be used as part of an effective preconditioner that accelerates convergence of the Krylov subspace iterative solver. Our approach also captures the full contribution from the nonlinear reaction term in the preconditioner, which is crucial for problems that exhibit stiff reactions. Numerical examples are presented to illustrate the overall effectiveness of the solver.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2015.02.012</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Backward differentiation formula ; Banded preconditioner ; Computation ; Computing time ; Contour integral method ; Differential equations ; Fractional Laplacian ; Jacobian-free Newton–Krylov ; Mathematical models ; Matrix representation ; Nonlinear ; Nonlinearity ; Operators ; Reaction-diffusion equations ; Solvers</subject><ispartof>Journal of computational physics, 2015-04, Vol.287, p.254-268</ispartof><rights>2015 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-3fc5dd2a5bfe08cfdff7cb4c28b209f9db8e58dd301bdfcde228d662ec1bc6ec3</citedby><cites>FETCH-LOGICAL-c373t-3fc5dd2a5bfe08cfdff7cb4c28b209f9db8e58dd301bdfcde228d662ec1bc6ec3</cites><orcidid>0000-0003-2659-054X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2015.02.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Simmons, Alex</creatorcontrib><creatorcontrib>Yang, Qianqian</creatorcontrib><creatorcontrib>Moroney, Timothy</creatorcontrib><title>A preconditioned numerical solver for stiff nonlinear reaction–diffusion equations with fractional Laplacians that avoids dense matrices</title><title>Journal of computational physics</title><description>The numerical solution of fractional partial differential equations poses significant computational challenges in regard to efficiency as a result of the spatial nonlocality of the fractional differential operators. The dense coefficient matrices that arise from spatial discretisation of these operators mean that even one-dimensional problems can be difficult to solve using standard methods on grids comprising thousands of nodes or more. In this work we address this issue of efficiency for one-dimensional, nonlinear space-fractional reaction–diffusion equations with fractional Laplacian operators.
We apply variable-order, variable-stepsize backward differentiation formulas in a Jacobian-free Newton–Krylov framework to advance the solution in time. A key advantage of this approach is the elimination of any requirement to form the dense matrix representation of the fractional Laplacian operator. We show how a banded approximation to this matrix, which can be formed and factorised efficiently, can be used as part of an effective preconditioner that accelerates convergence of the Krylov subspace iterative solver. Our approach also captures the full contribution from the nonlinear reaction term in the preconditioner, which is crucial for problems that exhibit stiff reactions. Numerical examples are presented to illustrate the overall effectiveness of the solver.</description><subject>Backward differentiation formula</subject><subject>Banded preconditioner</subject><subject>Computation</subject><subject>Computing time</subject><subject>Contour integral method</subject><subject>Differential equations</subject><subject>Fractional Laplacian</subject><subject>Jacobian-free Newton–Krylov</subject><subject>Mathematical models</subject><subject>Matrix representation</subject><subject>Nonlinear</subject><subject>Nonlinearity</subject><subject>Operators</subject><subject>Reaction-diffusion equations</subject><subject>Solvers</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kLtuHDEMRYXAAbLe5APSqUwzE0qz80Iqw3AewAJunFrQUBSsxaw0ljQbpHOdNn-YL4kW69oVCfJeXvAw9lFALUB0nw_1AZdagmhrkDUI-YZtBIxQyV50V2wDIEU1jqN4x65TOgDA0O6GDftzw5dIGLxx2QVPhvv1SNGhnnkK84kityHylJ213Ac_O0868kgaz_p_z39N2ayp9JyeVn0eJv7L5Udu40VTLu31Mmt0uqzyo85cn4IziRvyifhR55JH6T17a_Wc6MNL3bKfX-8ebr9X-_tvP25v9hU2fZOrxmJrjNTtZAkGtMbaHqcdymGSMNrRTAO1gzENiMlYNCTlYLpOEooJO8Jmyz5d7i4xPK2Usjq6hDTP2lNYkxI9COh3u5K2ZeIixRhSimTVEt1Rx99KgDpzVwdVuKszdwVSFe7F8-XiofLDyVFUCR15JOMK6KxMcK-4_wPQX5Ig</recordid><startdate>20150415</startdate><enddate>20150415</enddate><creator>Simmons, Alex</creator><creator>Yang, Qianqian</creator><creator>Moroney, Timothy</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2659-054X</orcidid></search><sort><creationdate>20150415</creationdate><title>A preconditioned numerical solver for stiff nonlinear reaction–diffusion equations with fractional Laplacians that avoids dense matrices</title><author>Simmons, Alex ; Yang, Qianqian ; Moroney, Timothy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-3fc5dd2a5bfe08cfdff7cb4c28b209f9db8e58dd301bdfcde228d662ec1bc6ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Backward differentiation formula</topic><topic>Banded preconditioner</topic><topic>Computation</topic><topic>Computing time</topic><topic>Contour integral method</topic><topic>Differential equations</topic><topic>Fractional Laplacian</topic><topic>Jacobian-free Newton–Krylov</topic><topic>Mathematical models</topic><topic>Matrix representation</topic><topic>Nonlinear</topic><topic>Nonlinearity</topic><topic>Operators</topic><topic>Reaction-diffusion equations</topic><topic>Solvers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simmons, Alex</creatorcontrib><creatorcontrib>Yang, Qianqian</creatorcontrib><creatorcontrib>Moroney, Timothy</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simmons, Alex</au><au>Yang, Qianqian</au><au>Moroney, Timothy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A preconditioned numerical solver for stiff nonlinear reaction–diffusion equations with fractional Laplacians that avoids dense matrices</atitle><jtitle>Journal of computational physics</jtitle><date>2015-04-15</date><risdate>2015</risdate><volume>287</volume><spage>254</spage><epage>268</epage><pages>254-268</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>The numerical solution of fractional partial differential equations poses significant computational challenges in regard to efficiency as a result of the spatial nonlocality of the fractional differential operators. The dense coefficient matrices that arise from spatial discretisation of these operators mean that even one-dimensional problems can be difficult to solve using standard methods on grids comprising thousands of nodes or more. In this work we address this issue of efficiency for one-dimensional, nonlinear space-fractional reaction–diffusion equations with fractional Laplacian operators.
We apply variable-order, variable-stepsize backward differentiation formulas in a Jacobian-free Newton–Krylov framework to advance the solution in time. A key advantage of this approach is the elimination of any requirement to form the dense matrix representation of the fractional Laplacian operator. We show how a banded approximation to this matrix, which can be formed and factorised efficiently, can be used as part of an effective preconditioner that accelerates convergence of the Krylov subspace iterative solver. Our approach also captures the full contribution from the nonlinear reaction term in the preconditioner, which is crucial for problems that exhibit stiff reactions. Numerical examples are presented to illustrate the overall effectiveness of the solver.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2015.02.012</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2659-054X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2015-04, Vol.287, p.254-268 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_1701074437 |
source | Elsevier ScienceDirect Journals |
subjects | Backward differentiation formula Banded preconditioner Computation Computing time Contour integral method Differential equations Fractional Laplacian Jacobian-free Newton–Krylov Mathematical models Matrix representation Nonlinear Nonlinearity Operators Reaction-diffusion equations Solvers |
title | A preconditioned numerical solver for stiff nonlinear reaction–diffusion equations with fractional Laplacians that avoids dense matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A19%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20preconditioned%20numerical%20solver%20for%20stiff%20nonlinear%20reaction%E2%80%93diffusion%20equations%20with%20fractional%20Laplacians%20that%20avoids%20dense%20matrices&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Simmons,%20Alex&rft.date=2015-04-15&rft.volume=287&rft.spage=254&rft.epage=268&rft.pages=254-268&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2015.02.012&rft_dat=%3Cproquest_cross%3E1701074437%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701074437&rft_id=info:pmid/&rft_els_id=S0021999115000741&rfr_iscdi=true |