A preconditioned numerical solver for stiff nonlinear reaction–diffusion equations with fractional Laplacians that avoids dense matrices

The numerical solution of fractional partial differential equations poses significant computational challenges in regard to efficiency as a result of the spatial nonlocality of the fractional differential operators. The dense coefficient matrices that arise from spatial discretisation of these opera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2015-04, Vol.287, p.254-268
Hauptverfasser: Simmons, Alex, Yang, Qianqian, Moroney, Timothy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 268
container_issue
container_start_page 254
container_title Journal of computational physics
container_volume 287
creator Simmons, Alex
Yang, Qianqian
Moroney, Timothy
description The numerical solution of fractional partial differential equations poses significant computational challenges in regard to efficiency as a result of the spatial nonlocality of the fractional differential operators. The dense coefficient matrices that arise from spatial discretisation of these operators mean that even one-dimensional problems can be difficult to solve using standard methods on grids comprising thousands of nodes or more. In this work we address this issue of efficiency for one-dimensional, nonlinear space-fractional reaction–diffusion equations with fractional Laplacian operators. We apply variable-order, variable-stepsize backward differentiation formulas in a Jacobian-free Newton–Krylov framework to advance the solution in time. A key advantage of this approach is the elimination of any requirement to form the dense matrix representation of the fractional Laplacian operator. We show how a banded approximation to this matrix, which can be formed and factorised efficiently, can be used as part of an effective preconditioner that accelerates convergence of the Krylov subspace iterative solver. Our approach also captures the full contribution from the nonlinear reaction term in the preconditioner, which is crucial for problems that exhibit stiff reactions. Numerical examples are presented to illustrate the overall effectiveness of the solver.
doi_str_mv 10.1016/j.jcp.2015.02.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701074437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999115000741</els_id><sourcerecordid>1701074437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-3fc5dd2a5bfe08cfdff7cb4c28b209f9db8e58dd301bdfcde228d662ec1bc6ec3</originalsourceid><addsrcrecordid>eNp9kLtuHDEMRYXAAbLe5APSqUwzE0qz80Iqw3AewAJunFrQUBSsxaw0ljQbpHOdNn-YL4kW69oVCfJeXvAw9lFALUB0nw_1AZdagmhrkDUI-YZtBIxQyV50V2wDIEU1jqN4x65TOgDA0O6GDftzw5dIGLxx2QVPhvv1SNGhnnkK84kityHylJ213Ac_O0868kgaz_p_z39N2ayp9JyeVn0eJv7L5Udu40VTLu31Mmt0uqzyo85cn4IziRvyifhR55JH6T17a_Wc6MNL3bKfX-8ebr9X-_tvP25v9hU2fZOrxmJrjNTtZAkGtMbaHqcdymGSMNrRTAO1gzENiMlYNCTlYLpOEooJO8Jmyz5d7i4xPK2Usjq6hDTP2lNYkxI9COh3u5K2ZeIixRhSimTVEt1Rx99KgDpzVwdVuKszdwVSFe7F8-XiofLDyVFUCR15JOMK6KxMcK-4_wPQX5Ig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701074437</pqid></control><display><type>article</type><title>A preconditioned numerical solver for stiff nonlinear reaction–diffusion equations with fractional Laplacians that avoids dense matrices</title><source>Elsevier ScienceDirect Journals</source><creator>Simmons, Alex ; Yang, Qianqian ; Moroney, Timothy</creator><creatorcontrib>Simmons, Alex ; Yang, Qianqian ; Moroney, Timothy</creatorcontrib><description>The numerical solution of fractional partial differential equations poses significant computational challenges in regard to efficiency as a result of the spatial nonlocality of the fractional differential operators. The dense coefficient matrices that arise from spatial discretisation of these operators mean that even one-dimensional problems can be difficult to solve using standard methods on grids comprising thousands of nodes or more. In this work we address this issue of efficiency for one-dimensional, nonlinear space-fractional reaction–diffusion equations with fractional Laplacian operators. We apply variable-order, variable-stepsize backward differentiation formulas in a Jacobian-free Newton–Krylov framework to advance the solution in time. A key advantage of this approach is the elimination of any requirement to form the dense matrix representation of the fractional Laplacian operator. We show how a banded approximation to this matrix, which can be formed and factorised efficiently, can be used as part of an effective preconditioner that accelerates convergence of the Krylov subspace iterative solver. Our approach also captures the full contribution from the nonlinear reaction term in the preconditioner, which is crucial for problems that exhibit stiff reactions. Numerical examples are presented to illustrate the overall effectiveness of the solver.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2015.02.012</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Backward differentiation formula ; Banded preconditioner ; Computation ; Computing time ; Contour integral method ; Differential equations ; Fractional Laplacian ; Jacobian-free Newton–Krylov ; Mathematical models ; Matrix representation ; Nonlinear ; Nonlinearity ; Operators ; Reaction-diffusion equations ; Solvers</subject><ispartof>Journal of computational physics, 2015-04, Vol.287, p.254-268</ispartof><rights>2015 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-3fc5dd2a5bfe08cfdff7cb4c28b209f9db8e58dd301bdfcde228d662ec1bc6ec3</citedby><cites>FETCH-LOGICAL-c373t-3fc5dd2a5bfe08cfdff7cb4c28b209f9db8e58dd301bdfcde228d662ec1bc6ec3</cites><orcidid>0000-0003-2659-054X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2015.02.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Simmons, Alex</creatorcontrib><creatorcontrib>Yang, Qianqian</creatorcontrib><creatorcontrib>Moroney, Timothy</creatorcontrib><title>A preconditioned numerical solver for stiff nonlinear reaction–diffusion equations with fractional Laplacians that avoids dense matrices</title><title>Journal of computational physics</title><description>The numerical solution of fractional partial differential equations poses significant computational challenges in regard to efficiency as a result of the spatial nonlocality of the fractional differential operators. The dense coefficient matrices that arise from spatial discretisation of these operators mean that even one-dimensional problems can be difficult to solve using standard methods on grids comprising thousands of nodes or more. In this work we address this issue of efficiency for one-dimensional, nonlinear space-fractional reaction–diffusion equations with fractional Laplacian operators. We apply variable-order, variable-stepsize backward differentiation formulas in a Jacobian-free Newton–Krylov framework to advance the solution in time. A key advantage of this approach is the elimination of any requirement to form the dense matrix representation of the fractional Laplacian operator. We show how a banded approximation to this matrix, which can be formed and factorised efficiently, can be used as part of an effective preconditioner that accelerates convergence of the Krylov subspace iterative solver. Our approach also captures the full contribution from the nonlinear reaction term in the preconditioner, which is crucial for problems that exhibit stiff reactions. Numerical examples are presented to illustrate the overall effectiveness of the solver.</description><subject>Backward differentiation formula</subject><subject>Banded preconditioner</subject><subject>Computation</subject><subject>Computing time</subject><subject>Contour integral method</subject><subject>Differential equations</subject><subject>Fractional Laplacian</subject><subject>Jacobian-free Newton–Krylov</subject><subject>Mathematical models</subject><subject>Matrix representation</subject><subject>Nonlinear</subject><subject>Nonlinearity</subject><subject>Operators</subject><subject>Reaction-diffusion equations</subject><subject>Solvers</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kLtuHDEMRYXAAbLe5APSqUwzE0qz80Iqw3AewAJunFrQUBSsxaw0ljQbpHOdNn-YL4kW69oVCfJeXvAw9lFALUB0nw_1AZdagmhrkDUI-YZtBIxQyV50V2wDIEU1jqN4x65TOgDA0O6GDftzw5dIGLxx2QVPhvv1SNGhnnkK84kityHylJ213Ac_O0868kgaz_p_z39N2ayp9JyeVn0eJv7L5Udu40VTLu31Mmt0uqzyo85cn4IziRvyifhR55JH6T17a_Wc6MNL3bKfX-8ebr9X-_tvP25v9hU2fZOrxmJrjNTtZAkGtMbaHqcdymGSMNrRTAO1gzENiMlYNCTlYLpOEooJO8Jmyz5d7i4xPK2Usjq6hDTP2lNYkxI9COh3u5K2ZeIixRhSimTVEt1Rx99KgDpzVwdVuKszdwVSFe7F8-XiofLDyVFUCR15JOMK6KxMcK-4_wPQX5Ig</recordid><startdate>20150415</startdate><enddate>20150415</enddate><creator>Simmons, Alex</creator><creator>Yang, Qianqian</creator><creator>Moroney, Timothy</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2659-054X</orcidid></search><sort><creationdate>20150415</creationdate><title>A preconditioned numerical solver for stiff nonlinear reaction–diffusion equations with fractional Laplacians that avoids dense matrices</title><author>Simmons, Alex ; Yang, Qianqian ; Moroney, Timothy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-3fc5dd2a5bfe08cfdff7cb4c28b209f9db8e58dd301bdfcde228d662ec1bc6ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Backward differentiation formula</topic><topic>Banded preconditioner</topic><topic>Computation</topic><topic>Computing time</topic><topic>Contour integral method</topic><topic>Differential equations</topic><topic>Fractional Laplacian</topic><topic>Jacobian-free Newton–Krylov</topic><topic>Mathematical models</topic><topic>Matrix representation</topic><topic>Nonlinear</topic><topic>Nonlinearity</topic><topic>Operators</topic><topic>Reaction-diffusion equations</topic><topic>Solvers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simmons, Alex</creatorcontrib><creatorcontrib>Yang, Qianqian</creatorcontrib><creatorcontrib>Moroney, Timothy</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simmons, Alex</au><au>Yang, Qianqian</au><au>Moroney, Timothy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A preconditioned numerical solver for stiff nonlinear reaction–diffusion equations with fractional Laplacians that avoids dense matrices</atitle><jtitle>Journal of computational physics</jtitle><date>2015-04-15</date><risdate>2015</risdate><volume>287</volume><spage>254</spage><epage>268</epage><pages>254-268</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>The numerical solution of fractional partial differential equations poses significant computational challenges in regard to efficiency as a result of the spatial nonlocality of the fractional differential operators. The dense coefficient matrices that arise from spatial discretisation of these operators mean that even one-dimensional problems can be difficult to solve using standard methods on grids comprising thousands of nodes or more. In this work we address this issue of efficiency for one-dimensional, nonlinear space-fractional reaction–diffusion equations with fractional Laplacian operators. We apply variable-order, variable-stepsize backward differentiation formulas in a Jacobian-free Newton–Krylov framework to advance the solution in time. A key advantage of this approach is the elimination of any requirement to form the dense matrix representation of the fractional Laplacian operator. We show how a banded approximation to this matrix, which can be formed and factorised efficiently, can be used as part of an effective preconditioner that accelerates convergence of the Krylov subspace iterative solver. Our approach also captures the full contribution from the nonlinear reaction term in the preconditioner, which is crucial for problems that exhibit stiff reactions. Numerical examples are presented to illustrate the overall effectiveness of the solver.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2015.02.012</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2659-054X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2015-04, Vol.287, p.254-268
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_1701074437
source Elsevier ScienceDirect Journals
subjects Backward differentiation formula
Banded preconditioner
Computation
Computing time
Contour integral method
Differential equations
Fractional Laplacian
Jacobian-free Newton–Krylov
Mathematical models
Matrix representation
Nonlinear
Nonlinearity
Operators
Reaction-diffusion equations
Solvers
title A preconditioned numerical solver for stiff nonlinear reaction–diffusion equations with fractional Laplacians that avoids dense matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A19%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20preconditioned%20numerical%20solver%20for%20stiff%20nonlinear%20reaction%E2%80%93diffusion%20equations%20with%20fractional%20Laplacians%20that%20avoids%20dense%20matrices&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Simmons,%20Alex&rft.date=2015-04-15&rft.volume=287&rft.spage=254&rft.epage=268&rft.pages=254-268&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2015.02.012&rft_dat=%3Cproquest_cross%3E1701074437%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701074437&rft_id=info:pmid/&rft_els_id=S0021999115000741&rfr_iscdi=true