Optimization of laser acceleration of protons from mixed structure nanotarget
In this study, ion acceleration from thin planar diamond-like carbon (DLC) and polystyrene (PS) foils irradiated by ultraintense (a0 = 200) and ultrashort (15 fs) laser pulses is investigated numerically. The effects of target composition and thickness on the acceleration of protons and carbon ions...
Gespeichert in:
Veröffentlicht in: | Laser and particle beams 2015-06, Vol.33 (2), p.339-346 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 346 |
---|---|
container_issue | 2 |
container_start_page | 339 |
container_title | Laser and particle beams |
container_volume | 33 |
creator | Mirzanejhad, Saeed Sohbatzadeh, Farshad Joulaei, Atefeh Babaei, Javad Shahabei, Khadijeh |
description | In this study, ion acceleration from thin planar diamond-like carbon (DLC) and polystyrene (PS) foils irradiated by ultraintense (a0 = 200) and ultrashort (15 fs) laser pulses is investigated numerically. The effects of target composition and thickness on the acceleration of protons and carbon ions are reported by 1D3V particle-in-cell simulation code and compared with the analytical models of ion acceleration. In the analytical formalism, the acceleration criterion of ions with different charge-to-mass ratio (q/m) is obtained. This criterion is related to the potential difference through the electrostatic shock distortion and its velocity. According to this result, charged particles with large q/m ratio have a good chance to accelerate in front of the electrostatic shock field. It is shown that mono-energetic proton bunch with energies >1.5 GeV is produced by 20 nm DLC foil supported by 10 nm hydrogen layer. Finally nanometer PS foil is examined and 2.33 Gev protons with ~1.5% energy spread are obtained for 50 nm thickness. |
doi_str_mv | 10.1017/S0263034615000129 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701074215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0263034615000129</cupid><sourcerecordid>2907186299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-bd28791fbadd10bae37e759da912d154ea38a52a9a95a61de05b362c28b82dec3</originalsourceid><addsrcrecordid>eNp9kU9LxDAQxYMouK5-AG8FL16qmaRpm6Ms_oOVPajgrUyb6dJl26xJCuqnt2UXEUVPAzO_9-bBY-wU-AVwyC4fuUgll0kKinMOQu-xCSSpjnMuX_bZZDzH4_2QHXm_GhilpJiwh8UmNG3zgaGxXWTraI2eXIRVRWtyX9uNs8F2PqqdbaO2eSMT-eD6KvSOog47G9AtKRyzgxrXnk52c8qeb66fZnfxfHF7P7uax1UiIMSlEXmmoS7RGOAlkswoU9qgBmFAJYQyRyVQo1aYgiGuSpmKSuRlLgxVcsrOt75DrteefCjaxg-J19iR7X0BGQeeDb_UgJ79QFe2d92QrhCaZ5CnQuv_KEhzwWWW6NELtlTlrPeO6mLjmhbdewG8GGsoftUwaOROg23pGrOkb9Z_qj4BwNmJIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1682037495</pqid></control><display><type>article</type><title>Optimization of laser acceleration of protons from mixed structure nanotarget</title><source>Cambridge University Press Journals Complete</source><creator>Mirzanejhad, Saeed ; Sohbatzadeh, Farshad ; Joulaei, Atefeh ; Babaei, Javad ; Shahabei, Khadijeh</creator><creatorcontrib>Mirzanejhad, Saeed ; Sohbatzadeh, Farshad ; Joulaei, Atefeh ; Babaei, Javad ; Shahabei, Khadijeh</creatorcontrib><description>In this study, ion acceleration from thin planar diamond-like carbon (DLC) and polystyrene (PS) foils irradiated by ultraintense (a0 = 200) and ultrashort (15 fs) laser pulses is investigated numerically. The effects of target composition and thickness on the acceleration of protons and carbon ions are reported by 1D3V particle-in-cell simulation code and compared with the analytical models of ion acceleration. In the analytical formalism, the acceleration criterion of ions with different charge-to-mass ratio (q/m) is obtained. This criterion is related to the potential difference through the electrostatic shock distortion and its velocity. According to this result, charged particles with large q/m ratio have a good chance to accelerate in front of the electrostatic shock field. It is shown that mono-energetic proton bunch with energies >1.5 GeV is produced by 20 nm DLC foil supported by 10 nm hydrogen layer. Finally nanometer PS foil is examined and 2.33 Gev protons with ~1.5% energy spread are obtained for 50 nm thickness.</description><identifier>ISSN: 0263-0346</identifier><identifier>EISSN: 1469-803X</identifier><identifier>DOI: 10.1017/S0263034615000129</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Acceleration ; Carbon ; Charged particles ; Criteria ; Diamond-like carbon ; Electrostatics ; Energy ; Foils ; Ion beams ; Ions ; Lasers ; Mathematical analysis ; Nanostructure ; Particle physics ; Plasma ; Polystyrene resins ; Propagation ; Protons ; Radiation ; Simulation ; Thickness ; Velocity</subject><ispartof>Laser and particle beams, 2015-06, Vol.33 (2), p.339-346</ispartof><rights>Copyright © Cambridge University Press 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-bd28791fbadd10bae37e759da912d154ea38a52a9a95a61de05b362c28b82dec3</citedby><cites>FETCH-LOGICAL-c421t-bd28791fbadd10bae37e759da912d154ea38a52a9a95a61de05b362c28b82dec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0263034615000129/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,315,781,785,27925,27926,55629</link.rule.ids></links><search><creatorcontrib>Mirzanejhad, Saeed</creatorcontrib><creatorcontrib>Sohbatzadeh, Farshad</creatorcontrib><creatorcontrib>Joulaei, Atefeh</creatorcontrib><creatorcontrib>Babaei, Javad</creatorcontrib><creatorcontrib>Shahabei, Khadijeh</creatorcontrib><title>Optimization of laser acceleration of protons from mixed structure nanotarget</title><title>Laser and particle beams</title><addtitle>Laser Part. Beams</addtitle><description>In this study, ion acceleration from thin planar diamond-like carbon (DLC) and polystyrene (PS) foils irradiated by ultraintense (a0 = 200) and ultrashort (15 fs) laser pulses is investigated numerically. The effects of target composition and thickness on the acceleration of protons and carbon ions are reported by 1D3V particle-in-cell simulation code and compared with the analytical models of ion acceleration. In the analytical formalism, the acceleration criterion of ions with different charge-to-mass ratio (q/m) is obtained. This criterion is related to the potential difference through the electrostatic shock distortion and its velocity. According to this result, charged particles with large q/m ratio have a good chance to accelerate in front of the electrostatic shock field. It is shown that mono-energetic proton bunch with energies >1.5 GeV is produced by 20 nm DLC foil supported by 10 nm hydrogen layer. Finally nanometer PS foil is examined and 2.33 Gev protons with ~1.5% energy spread are obtained for 50 nm thickness.</description><subject>Acceleration</subject><subject>Carbon</subject><subject>Charged particles</subject><subject>Criteria</subject><subject>Diamond-like carbon</subject><subject>Electrostatics</subject><subject>Energy</subject><subject>Foils</subject><subject>Ion beams</subject><subject>Ions</subject><subject>Lasers</subject><subject>Mathematical analysis</subject><subject>Nanostructure</subject><subject>Particle physics</subject><subject>Plasma</subject><subject>Polystyrene resins</subject><subject>Propagation</subject><subject>Protons</subject><subject>Radiation</subject><subject>Simulation</subject><subject>Thickness</subject><subject>Velocity</subject><issn>0263-0346</issn><issn>1469-803X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9LxDAQxYMouK5-AG8FL16qmaRpm6Ms_oOVPajgrUyb6dJl26xJCuqnt2UXEUVPAzO_9-bBY-wU-AVwyC4fuUgll0kKinMOQu-xCSSpjnMuX_bZZDzH4_2QHXm_GhilpJiwh8UmNG3zgaGxXWTraI2eXIRVRWtyX9uNs8F2PqqdbaO2eSMT-eD6KvSOog47G9AtKRyzgxrXnk52c8qeb66fZnfxfHF7P7uax1UiIMSlEXmmoS7RGOAlkswoU9qgBmFAJYQyRyVQo1aYgiGuSpmKSuRlLgxVcsrOt75DrteefCjaxg-J19iR7X0BGQeeDb_UgJ79QFe2d92QrhCaZ5CnQuv_KEhzwWWW6NELtlTlrPeO6mLjmhbdewG8GGsoftUwaOROg23pGrOkb9Z_qj4BwNmJIw</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Mirzanejhad, Saeed</creator><creator>Sohbatzadeh, Farshad</creator><creator>Joulaei, Atefeh</creator><creator>Babaei, Javad</creator><creator>Shahabei, Khadijeh</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20150601</creationdate><title>Optimization of laser acceleration of protons from mixed structure nanotarget</title><author>Mirzanejhad, Saeed ; Sohbatzadeh, Farshad ; Joulaei, Atefeh ; Babaei, Javad ; Shahabei, Khadijeh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-bd28791fbadd10bae37e759da912d154ea38a52a9a95a61de05b362c28b82dec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acceleration</topic><topic>Carbon</topic><topic>Charged particles</topic><topic>Criteria</topic><topic>Diamond-like carbon</topic><topic>Electrostatics</topic><topic>Energy</topic><topic>Foils</topic><topic>Ion beams</topic><topic>Ions</topic><topic>Lasers</topic><topic>Mathematical analysis</topic><topic>Nanostructure</topic><topic>Particle physics</topic><topic>Plasma</topic><topic>Polystyrene resins</topic><topic>Propagation</topic><topic>Protons</topic><topic>Radiation</topic><topic>Simulation</topic><topic>Thickness</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mirzanejhad, Saeed</creatorcontrib><creatorcontrib>Sohbatzadeh, Farshad</creatorcontrib><creatorcontrib>Joulaei, Atefeh</creatorcontrib><creatorcontrib>Babaei, Javad</creatorcontrib><creatorcontrib>Shahabei, Khadijeh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Laser and particle beams</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mirzanejhad, Saeed</au><au>Sohbatzadeh, Farshad</au><au>Joulaei, Atefeh</au><au>Babaei, Javad</au><au>Shahabei, Khadijeh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of laser acceleration of protons from mixed structure nanotarget</atitle><jtitle>Laser and particle beams</jtitle><addtitle>Laser Part. Beams</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>33</volume><issue>2</issue><spage>339</spage><epage>346</epage><pages>339-346</pages><issn>0263-0346</issn><eissn>1469-803X</eissn><abstract>In this study, ion acceleration from thin planar diamond-like carbon (DLC) and polystyrene (PS) foils irradiated by ultraintense (a0 = 200) and ultrashort (15 fs) laser pulses is investigated numerically. The effects of target composition and thickness on the acceleration of protons and carbon ions are reported by 1D3V particle-in-cell simulation code and compared with the analytical models of ion acceleration. In the analytical formalism, the acceleration criterion of ions with different charge-to-mass ratio (q/m) is obtained. This criterion is related to the potential difference through the electrostatic shock distortion and its velocity. According to this result, charged particles with large q/m ratio have a good chance to accelerate in front of the electrostatic shock field. It is shown that mono-energetic proton bunch with energies >1.5 GeV is produced by 20 nm DLC foil supported by 10 nm hydrogen layer. Finally nanometer PS foil is examined and 2.33 Gev protons with ~1.5% energy spread are obtained for 50 nm thickness.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S0263034615000129</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-0346 |
ispartof | Laser and particle beams, 2015-06, Vol.33 (2), p.339-346 |
issn | 0263-0346 1469-803X |
language | eng |
recordid | cdi_proquest_miscellaneous_1701074215 |
source | Cambridge University Press Journals Complete |
subjects | Acceleration Carbon Charged particles Criteria Diamond-like carbon Electrostatics Energy Foils Ion beams Ions Lasers Mathematical analysis Nanostructure Particle physics Plasma Polystyrene resins Propagation Protons Radiation Simulation Thickness Velocity |
title | Optimization of laser acceleration of protons from mixed structure nanotarget |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T14%3A14%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20laser%20acceleration%20of%20protons%20from%20mixed%20structure%20nanotarget&rft.jtitle=Laser%20and%20particle%20beams&rft.au=Mirzanejhad,%20Saeed&rft.date=2015-06-01&rft.volume=33&rft.issue=2&rft.spage=339&rft.epage=346&rft.pages=339-346&rft.issn=0263-0346&rft.eissn=1469-803X&rft_id=info:doi/10.1017/S0263034615000129&rft_dat=%3Cproquest_cross%3E2907186299%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1682037495&rft_id=info:pmid/&rft_cupid=10_1017_S0263034615000129&rfr_iscdi=true |