ATISA: Adaptive Threshold-based Instance Selection Algorithm

•We propose three instance reduction techniques called ATISA1,2,3.•ATISA maintain important border and inner points per class based on an adaptive threshold.•When compared with the state-of-the-art algorithms, ATISA1 obtains better accuracy rates and promising reduction rates.•ATISA is faster than D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2013-12, Vol.40 (17), p.6894-6900
Hauptverfasser: Cavalcanti, George D.C., Ren, Tsang Ing, Pereira, Cesar Lima
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6900
container_issue 17
container_start_page 6894
container_title Expert systems with applications
container_volume 40
creator Cavalcanti, George D.C.
Ren, Tsang Ing
Pereira, Cesar Lima
description •We propose three instance reduction techniques called ATISA1,2,3.•ATISA maintain important border and inner points per class based on an adaptive threshold.•When compared with the state-of-the-art algorithms, ATISA1 obtains better accuracy rates and promising reduction rates.•ATISA is faster than DROP3, ICF and HMN-EI. Instance reduction techniques can improve generalization, reduce storage requirements and execution time of instance-based learning algorithms. This paper presents an instance reduction algorithm called Adaptive Threshold-based Instance Selection Algorithm (ATISA). ATISA aims to preserve important instances based on a selection criterion that uses the distance of each instance to its nearest enemy as a threshold. This threshold defines the coverage area of each instance that is given by a hyper-sphere centered at it. The experimental results show the effectiveness, in terms of accuracy, reduction rate, and computational time, of the ATISA algorithm when compared with state-of-the-art reduction algorithms.
doi_str_mv 10.1016/j.eswa.2013.06.053
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701070645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S095741741300448X</els_id><sourcerecordid>1701070645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-efbeb252115be6779834c80d0c0cf4194b95aeda2f082c20279f6bbe4f6c51563</originalsourceid><addsrcrecordid>eNqF0D1PwzAQgGELgUQp_AGmLEgsCeeP2AliiSo-KlViaJktx7lQV2lT7FDEv8dVK0aYvLx3Jz-EXFPIKFB5t8owfJmMAeUZyAxyfkJGtFA8larkp2QEZa5SQZU4JxchrACoAlAj8lAtpvPqPqkasx3cDpPF0mNY9l2T1iZgk0w3YTAbi8kcO7SD6zdJ1b333g3L9SU5a00X8Or4jsnb0-Ni8pLOXp-nk2qWWl7KIcW2xprljNK8RqlUWXBhC2jAgm0FLUVd5gYbw1oomGXAVNnKukbRSpvTXPIxuT3s3fr-4xPDoNcuWOw6s8H-M-j4FwoKpMj_T4UoFJWcQ0zZIbW-D8Fjq7ferY3_1hT0XlWv9F5V71U1SB1V49DNcb8J1nStjzYu_E4yJaUSIGL3cOgwuuwceh2sw-jYOB8ZddO7v878APt7i6k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448716330</pqid></control><display><type>article</type><title>ATISA: Adaptive Threshold-based Instance Selection Algorithm</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Cavalcanti, George D.C. ; Ren, Tsang Ing ; Pereira, Cesar Lima</creator><creatorcontrib>Cavalcanti, George D.C. ; Ren, Tsang Ing ; Pereira, Cesar Lima</creatorcontrib><description>•We propose three instance reduction techniques called ATISA1,2,3.•ATISA maintain important border and inner points per class based on an adaptive threshold.•When compared with the state-of-the-art algorithms, ATISA1 obtains better accuracy rates and promising reduction rates.•ATISA is faster than DROP3, ICF and HMN-EI. Instance reduction techniques can improve generalization, reduce storage requirements and execution time of instance-based learning algorithms. This paper presents an instance reduction algorithm called Adaptive Threshold-based Instance Selection Algorithm (ATISA). ATISA aims to preserve important instances based on a selection criterion that uses the distance of each instance to its nearest enemy as a threshold. This threshold defines the coverage area of each instance that is given by a hyper-sphere centered at it. The experimental results show the effectiveness, in terms of accuracy, reduction rate, and computational time, of the ATISA algorithm when compared with state-of-the-art reduction algorithms.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2013.06.053</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Adaptive algorithms ; Algorithms ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Data processing. List processing. Character string processing ; Exact sciences and technology ; Expert systems ; Instance selection ; Instance-based learning algorithms ; Learning ; Memory organisation. Data processing ; Preserves ; Reduction ; Software ; State of the art ; Thresholds</subject><ispartof>Expert systems with applications, 2013-12, Vol.40 (17), p.6894-6900</ispartof><rights>2013 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-efbeb252115be6779834c80d0c0cf4194b95aeda2f082c20279f6bbe4f6c51563</citedby><cites>FETCH-LOGICAL-c396t-efbeb252115be6779834c80d0c0cf4194b95aeda2f082c20279f6bbe4f6c51563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S095741741300448X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27667404$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cavalcanti, George D.C.</creatorcontrib><creatorcontrib>Ren, Tsang Ing</creatorcontrib><creatorcontrib>Pereira, Cesar Lima</creatorcontrib><title>ATISA: Adaptive Threshold-based Instance Selection Algorithm</title><title>Expert systems with applications</title><description>•We propose three instance reduction techniques called ATISA1,2,3.•ATISA maintain important border and inner points per class based on an adaptive threshold.•When compared with the state-of-the-art algorithms, ATISA1 obtains better accuracy rates and promising reduction rates.•ATISA is faster than DROP3, ICF and HMN-EI. Instance reduction techniques can improve generalization, reduce storage requirements and execution time of instance-based learning algorithms. This paper presents an instance reduction algorithm called Adaptive Threshold-based Instance Selection Algorithm (ATISA). ATISA aims to preserve important instances based on a selection criterion that uses the distance of each instance to its nearest enemy as a threshold. This threshold defines the coverage area of each instance that is given by a hyper-sphere centered at it. The experimental results show the effectiveness, in terms of accuracy, reduction rate, and computational time, of the ATISA algorithm when compared with state-of-the-art reduction algorithms.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Data processing. List processing. Character string processing</subject><subject>Exact sciences and technology</subject><subject>Expert systems</subject><subject>Instance selection</subject><subject>Instance-based learning algorithms</subject><subject>Learning</subject><subject>Memory organisation. Data processing</subject><subject>Preserves</subject><subject>Reduction</subject><subject>Software</subject><subject>State of the art</subject><subject>Thresholds</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0D1PwzAQgGELgUQp_AGmLEgsCeeP2AliiSo-KlViaJktx7lQV2lT7FDEv8dVK0aYvLx3Jz-EXFPIKFB5t8owfJmMAeUZyAxyfkJGtFA8larkp2QEZa5SQZU4JxchrACoAlAj8lAtpvPqPqkasx3cDpPF0mNY9l2T1iZgk0w3YTAbi8kcO7SD6zdJ1b333g3L9SU5a00X8Or4jsnb0-Ni8pLOXp-nk2qWWl7KIcW2xprljNK8RqlUWXBhC2jAgm0FLUVd5gYbw1oomGXAVNnKukbRSpvTXPIxuT3s3fr-4xPDoNcuWOw6s8H-M-j4FwoKpMj_T4UoFJWcQ0zZIbW-D8Fjq7ferY3_1hT0XlWv9F5V71U1SB1V49DNcb8J1nStjzYu_E4yJaUSIGL3cOgwuuwceh2sw-jYOB8ZddO7v878APt7i6k</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Cavalcanti, George D.C.</creator><creator>Ren, Tsang Ing</creator><creator>Pereira, Cesar Lima</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131201</creationdate><title>ATISA: Adaptive Threshold-based Instance Selection Algorithm</title><author>Cavalcanti, George D.C. ; Ren, Tsang Ing ; Pereira, Cesar Lima</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-efbeb252115be6779834c80d0c0cf4194b95aeda2f082c20279f6bbe4f6c51563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Data processing. List processing. Character string processing</topic><topic>Exact sciences and technology</topic><topic>Expert systems</topic><topic>Instance selection</topic><topic>Instance-based learning algorithms</topic><topic>Learning</topic><topic>Memory organisation. Data processing</topic><topic>Preserves</topic><topic>Reduction</topic><topic>Software</topic><topic>State of the art</topic><topic>Thresholds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cavalcanti, George D.C.</creatorcontrib><creatorcontrib>Ren, Tsang Ing</creatorcontrib><creatorcontrib>Pereira, Cesar Lima</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cavalcanti, George D.C.</au><au>Ren, Tsang Ing</au><au>Pereira, Cesar Lima</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ATISA: Adaptive Threshold-based Instance Selection Algorithm</atitle><jtitle>Expert systems with applications</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>40</volume><issue>17</issue><spage>6894</spage><epage>6900</epage><pages>6894-6900</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>•We propose three instance reduction techniques called ATISA1,2,3.•ATISA maintain important border and inner points per class based on an adaptive threshold.•When compared with the state-of-the-art algorithms, ATISA1 obtains better accuracy rates and promising reduction rates.•ATISA is faster than DROP3, ICF and HMN-EI. Instance reduction techniques can improve generalization, reduce storage requirements and execution time of instance-based learning algorithms. This paper presents an instance reduction algorithm called Adaptive Threshold-based Instance Selection Algorithm (ATISA). ATISA aims to preserve important instances based on a selection criterion that uses the distance of each instance to its nearest enemy as a threshold. This threshold defines the coverage area of each instance that is given by a hyper-sphere centered at it. The experimental results show the effectiveness, in terms of accuracy, reduction rate, and computational time, of the ATISA algorithm when compared with state-of-the-art reduction algorithms.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2013.06.053</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2013-12, Vol.40 (17), p.6894-6900
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_miscellaneous_1701070645
source ScienceDirect Journals (5 years ago - present)
subjects Adaptive algorithms
Algorithms
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Data processing. List processing. Character string processing
Exact sciences and technology
Expert systems
Instance selection
Instance-based learning algorithms
Learning
Memory organisation. Data processing
Preserves
Reduction
Software
State of the art
Thresholds
title ATISA: Adaptive Threshold-based Instance Selection Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A47%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ATISA:%20Adaptive%20Threshold-based%20Instance%20Selection%20Algorithm&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Cavalcanti,%20George%20D.C.&rft.date=2013-12-01&rft.volume=40&rft.issue=17&rft.spage=6894&rft.epage=6900&rft.pages=6894-6900&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2013.06.053&rft_dat=%3Cproquest_cross%3E1701070645%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1448716330&rft_id=info:pmid/&rft_els_id=S095741741300448X&rfr_iscdi=true