Phase stability in nanoscale material systems: extension from bulk phase diagrams
Phase diagrams of multi-component systems are critical for the development and engineering of material alloys for all technological applications. At nano dimensions, surfaces (and interfaces) play a significant role in changing equilibrium thermodynamics and phase stability. In this work, it is show...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2015-06, Vol.7 (21), p.9868-9877 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9877 |
---|---|
container_issue | 21 |
container_start_page | 9868 |
container_title | Nanoscale |
container_volume | 7 |
creator | Bajaj, Saurabh Haverty, Michael G Arróyave, Raymundo Goddard, 3rd, William A Shankar, Sadasivan |
description | Phase diagrams of multi-component systems are critical for the development and engineering of material alloys for all technological applications. At nano dimensions, surfaces (and interfaces) play a significant role in changing equilibrium thermodynamics and phase stability. In this work, it is shown that these surfaces at small dimensions affect the relative equilibrium thermodynamics of the different phases. The CALPHAD approach for material surfaces (also termed "nano-CALPHAD") is employed to investigate these changes in three binary systems by calculating their phase diagrams at nano dimensions and comparing them with their bulk counterparts. The surface energy contribution, which is the dominant factor in causing these changes, is evaluated using the spherical particle approximation. It is first validated with the Au-Si system for which experimental data on phase stability of spherical nano-sized particles is available, and then extended to calculate phase diagrams of similarly sized particles of Ge-Si and Al-Cu. Additionally, the surface energies of the associated compounds are calculated using DFT, and integrated into the thermodynamic model of the respective binary systems. In this work we found changes in miscibilities, reaction compositions of about 5 at%, and solubility temperatures ranging from 100-200 K for particles of sizes 5 nm, indicating the importance of phase equilibrium analysis at nano dimensions. |
doi_str_mv | 10.1039/c5nr01535a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701064894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701064894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-63e530fa78a6734e4fcfc15c8e3086d6bb26d9582220b468c7abf8207196cc063</originalsourceid><addsrcrecordid>eNqFkEtLAzEURoMotlY3_gDJUoTRPCY3GXel-ILiC10PmTSj0XnU3Bmw_97a1m5d3bs4HD4OIcecnXMmswunmsi4ksrukKFgKUuk1GJ3-0M6IAeIH4xBJkHuk4FQGSjJ-JA8Pb5b9BQ7W4QqdAsaGtrYpkVnK09r2_kYbEVxgZ2v8ZL67843GNqGlrGtadFXn3S-UsyCfYu2xkOyV9oK_dHmjsjr9dXL5DaZPtzcTcbTxEkFXQLSLxeUVhsLWqY-LV3puHLGS2ZgBkUhYJYpI4RgRQrGaVuURjDNM3COgRyR07V3Htuv3mOX1wGdryrb-LbHnGvGGaQmS_9HwUilNSizRM_WqIstYvRlPo-htnGRc5b_1s4n6v55VXu8hE823r6o_WyL_uWVP2cPecs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1683577658</pqid></control><display><type>article</type><title>Phase stability in nanoscale material systems: extension from bulk phase diagrams</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Bajaj, Saurabh ; Haverty, Michael G ; Arróyave, Raymundo ; Goddard, 3rd, William A ; Shankar, Sadasivan</creator><creatorcontrib>Bajaj, Saurabh ; Haverty, Michael G ; Arróyave, Raymundo ; Goddard, 3rd, William A ; Shankar, Sadasivan</creatorcontrib><description>Phase diagrams of multi-component systems are critical for the development and engineering of material alloys for all technological applications. At nano dimensions, surfaces (and interfaces) play a significant role in changing equilibrium thermodynamics and phase stability. In this work, it is shown that these surfaces at small dimensions affect the relative equilibrium thermodynamics of the different phases. The CALPHAD approach for material surfaces (also termed "nano-CALPHAD") is employed to investigate these changes in three binary systems by calculating their phase diagrams at nano dimensions and comparing them with their bulk counterparts. The surface energy contribution, which is the dominant factor in causing these changes, is evaluated using the spherical particle approximation. It is first validated with the Au-Si system for which experimental data on phase stability of spherical nano-sized particles is available, and then extended to calculate phase diagrams of similarly sized particles of Ge-Si and Al-Cu. Additionally, the surface energies of the associated compounds are calculated using DFT, and integrated into the thermodynamic model of the respective binary systems. In this work we found changes in miscibilities, reaction compositions of about 5 at%, and solubility temperatures ranging from 100-200 K for particles of sizes 5 nm, indicating the importance of phase equilibrium analysis at nano dimensions.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c5nr01535a</identifier><identifier>PMID: 25965301</identifier><language>eng</language><publisher>England</publisher><subject>Binary systems ; Computer simulation ; Mathematical models ; Nanostructure ; Phase diagrams ; Phase stability ; Phase transformations ; Surface energy</subject><ispartof>Nanoscale, 2015-06, Vol.7 (21), p.9868-9877</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-63e530fa78a6734e4fcfc15c8e3086d6bb26d9582220b468c7abf8207196cc063</citedby><cites>FETCH-LOGICAL-c356t-63e530fa78a6734e4fcfc15c8e3086d6bb26d9582220b468c7abf8207196cc063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25965301$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bajaj, Saurabh</creatorcontrib><creatorcontrib>Haverty, Michael G</creatorcontrib><creatorcontrib>Arróyave, Raymundo</creatorcontrib><creatorcontrib>Goddard, 3rd, William A</creatorcontrib><creatorcontrib>Shankar, Sadasivan</creatorcontrib><title>Phase stability in nanoscale material systems: extension from bulk phase diagrams</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Phase diagrams of multi-component systems are critical for the development and engineering of material alloys for all technological applications. At nano dimensions, surfaces (and interfaces) play a significant role in changing equilibrium thermodynamics and phase stability. In this work, it is shown that these surfaces at small dimensions affect the relative equilibrium thermodynamics of the different phases. The CALPHAD approach for material surfaces (also termed "nano-CALPHAD") is employed to investigate these changes in three binary systems by calculating their phase diagrams at nano dimensions and comparing them with their bulk counterparts. The surface energy contribution, which is the dominant factor in causing these changes, is evaluated using the spherical particle approximation. It is first validated with the Au-Si system for which experimental data on phase stability of spherical nano-sized particles is available, and then extended to calculate phase diagrams of similarly sized particles of Ge-Si and Al-Cu. Additionally, the surface energies of the associated compounds are calculated using DFT, and integrated into the thermodynamic model of the respective binary systems. In this work we found changes in miscibilities, reaction compositions of about 5 at%, and solubility temperatures ranging from 100-200 K for particles of sizes 5 nm, indicating the importance of phase equilibrium analysis at nano dimensions.</description><subject>Binary systems</subject><subject>Computer simulation</subject><subject>Mathematical models</subject><subject>Nanostructure</subject><subject>Phase diagrams</subject><subject>Phase stability</subject><subject>Phase transformations</subject><subject>Surface energy</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEURoMotlY3_gDJUoTRPCY3GXel-ILiC10PmTSj0XnU3Bmw_97a1m5d3bs4HD4OIcecnXMmswunmsi4ksrukKFgKUuk1GJ3-0M6IAeIH4xBJkHuk4FQGSjJ-JA8Pb5b9BQ7W4QqdAsaGtrYpkVnK09r2_kYbEVxgZ2v8ZL67843GNqGlrGtadFXn3S-UsyCfYu2xkOyV9oK_dHmjsjr9dXL5DaZPtzcTcbTxEkFXQLSLxeUVhsLWqY-LV3puHLGS2ZgBkUhYJYpI4RgRQrGaVuURjDNM3COgRyR07V3Htuv3mOX1wGdryrb-LbHnGvGGaQmS_9HwUilNSizRM_WqIstYvRlPo-htnGRc5b_1s4n6v55VXu8hE823r6o_WyL_uWVP2cPecs</recordid><startdate>20150607</startdate><enddate>20150607</enddate><creator>Bajaj, Saurabh</creator><creator>Haverty, Michael G</creator><creator>Arróyave, Raymundo</creator><creator>Goddard, 3rd, William A</creator><creator>Shankar, Sadasivan</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QF</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150607</creationdate><title>Phase stability in nanoscale material systems: extension from bulk phase diagrams</title><author>Bajaj, Saurabh ; Haverty, Michael G ; Arróyave, Raymundo ; Goddard, 3rd, William A ; Shankar, Sadasivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-63e530fa78a6734e4fcfc15c8e3086d6bb26d9582220b468c7abf8207196cc063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Binary systems</topic><topic>Computer simulation</topic><topic>Mathematical models</topic><topic>Nanostructure</topic><topic>Phase diagrams</topic><topic>Phase stability</topic><topic>Phase transformations</topic><topic>Surface energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bajaj, Saurabh</creatorcontrib><creatorcontrib>Haverty, Michael G</creatorcontrib><creatorcontrib>Arróyave, Raymundo</creatorcontrib><creatorcontrib>Goddard, 3rd, William A</creatorcontrib><creatorcontrib>Shankar, Sadasivan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bajaj, Saurabh</au><au>Haverty, Michael G</au><au>Arróyave, Raymundo</au><au>Goddard, 3rd, William A</au><au>Shankar, Sadasivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase stability in nanoscale material systems: extension from bulk phase diagrams</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2015-06-07</date><risdate>2015</risdate><volume>7</volume><issue>21</issue><spage>9868</spage><epage>9877</epage><pages>9868-9877</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Phase diagrams of multi-component systems are critical for the development and engineering of material alloys for all technological applications. At nano dimensions, surfaces (and interfaces) play a significant role in changing equilibrium thermodynamics and phase stability. In this work, it is shown that these surfaces at small dimensions affect the relative equilibrium thermodynamics of the different phases. The CALPHAD approach for material surfaces (also termed "nano-CALPHAD") is employed to investigate these changes in three binary systems by calculating their phase diagrams at nano dimensions and comparing them with their bulk counterparts. The surface energy contribution, which is the dominant factor in causing these changes, is evaluated using the spherical particle approximation. It is first validated with the Au-Si system for which experimental data on phase stability of spherical nano-sized particles is available, and then extended to calculate phase diagrams of similarly sized particles of Ge-Si and Al-Cu. Additionally, the surface energies of the associated compounds are calculated using DFT, and integrated into the thermodynamic model of the respective binary systems. In this work we found changes in miscibilities, reaction compositions of about 5 at%, and solubility temperatures ranging from 100-200 K for particles of sizes 5 nm, indicating the importance of phase equilibrium analysis at nano dimensions.</abstract><cop>England</cop><pmid>25965301</pmid><doi>10.1039/c5nr01535a</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2015-06, Vol.7 (21), p.9868-9877 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_1701064894 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Binary systems Computer simulation Mathematical models Nanostructure Phase diagrams Phase stability Phase transformations Surface energy |
title | Phase stability in nanoscale material systems: extension from bulk phase diagrams |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T22%3A57%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20stability%20in%20nanoscale%20material%20systems:%20extension%20from%20bulk%20phase%20diagrams&rft.jtitle=Nanoscale&rft.au=Bajaj,%20Saurabh&rft.date=2015-06-07&rft.volume=7&rft.issue=21&rft.spage=9868&rft.epage=9877&rft.pages=9868-9877&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c5nr01535a&rft_dat=%3Cproquest_cross%3E1701064894%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1683577658&rft_id=info:pmid/25965301&rfr_iscdi=true |