Crack propagation analysis in composite materials by using moving mesh and multiscale techniques

•A novel multiscale method for crack propagation analysis in composites is proposed.•An adaptive model refinement is used during crack propagation to improve efficiency.•Competition between different damage mechanisms is handled during crack simulation.•Matrix cracking is modeled by a novel optimiza...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & structures 2015-06, Vol.153, p.201-216
Hauptverfasser: Greco, Fabrizio, Leonetti, Lorenzo, Lonetti, Paolo, Nevone Blasi, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 216
container_issue
container_start_page 201
container_title Computers & structures
container_volume 153
creator Greco, Fabrizio
Leonetti, Lorenzo
Lonetti, Paolo
Nevone Blasi, Paolo
description •A novel multiscale method for crack propagation analysis in composites is proposed.•An adaptive model refinement is used during crack propagation to improve efficiency.•Competition between different damage mechanisms is handled during crack simulation.•Matrix cracking is modeled by a novel optimization strategy based on moving meshes.•The proposed approach is validated by original comparisons with existing methods. A novel concurrent multiscale method for the crack propagation analysis in heterogeneous materials is proposed, based on a non-overlapping domain decomposition technique coupled with an adaptive zoom-in strategy. Both fiber/matrix interfacial debonding and matrix cracking are accounted for; the latter one is modeled by using an innovative shape optimization method coupling a moving mesh technique and a gradient-free optimization solver. Numerical applications are carried out with reference to the failure analysis of a single notched fiber-reinforced composite beam subjected to both mode-I and mixed-mode crack propagation conditions. The validity of the proposed method is assessed through original comparison models.
doi_str_mv 10.1016/j.compstruc.2015.03.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701060852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004579491500084X</els_id><sourcerecordid>1701060852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-c9377f97f5ee3784b67ff1ac7c58afd8e9251743ee6f1393452ef7ba14fab0c43</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwG_CRS8I6duLkWFW8pEpc4Gxcd9265IXtVOq_J6GIK6e5zMzufITcMkgZsOJ-n5qu6UP0g0kzYHkKPAXIzsiMlbJKskzwczIDEHkiK1FdkqsQ9gBQCIAZ-Vh6bT5p77teb3V0XUt1q-tjcIG6lk7VXXARaaMjeqfrQNdHOgTXbmnTHX4Ew24MbWgz1NEFo2ukEc2udV8DhmtyYccU3vzqnLw_Prwtn5PV69PLcrFKDBdlTEzFpbSVtDkil6VYF9Japo00eantpsQqy5kUHLGwjFdc5BlaudZMWL0GI_ic3J16xynT3aia8Resa91iNwTFJDAooMyz0SpPVuO7EDxa1XvXaH9UDNTEVO3VH1M1MVXA1ch0TC5OSRyXHBx6FYzD1uDGeTRRbTr3b8c33m-HDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701060852</pqid></control><display><type>article</type><title>Crack propagation analysis in composite materials by using moving mesh and multiscale techniques</title><source>Elsevier ScienceDirect Journals</source><creator>Greco, Fabrizio ; Leonetti, Lorenzo ; Lonetti, Paolo ; Nevone Blasi, Paolo</creator><creatorcontrib>Greco, Fabrizio ; Leonetti, Lorenzo ; Lonetti, Paolo ; Nevone Blasi, Paolo</creatorcontrib><description>•A novel multiscale method for crack propagation analysis in composites is proposed.•An adaptive model refinement is used during crack propagation to improve efficiency.•Competition between different damage mechanisms is handled during crack simulation.•Matrix cracking is modeled by a novel optimization strategy based on moving meshes.•The proposed approach is validated by original comparisons with existing methods. A novel concurrent multiscale method for the crack propagation analysis in heterogeneous materials is proposed, based on a non-overlapping domain decomposition technique coupled with an adaptive zoom-in strategy. Both fiber/matrix interfacial debonding and matrix cracking are accounted for; the latter one is modeled by using an innovative shape optimization method coupling a moving mesh technique and a gradient-free optimization solver. Numerical applications are carried out with reference to the failure analysis of a single notched fiber-reinforced composite beam subjected to both mode-I and mixed-mode crack propagation conditions. The validity of the proposed method is assessed through original comparison models.</description><identifier>ISSN: 0045-7949</identifier><identifier>EISSN: 1879-2243</identifier><identifier>DOI: 10.1016/j.compstruc.2015.03.002</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Composite materials ; Computer simulation ; Concurrent multiscale methods ; Crack propagation ; Fiber composites ; Finite element method ; Fracture mechanics ; Interface debonding ; Joining ; Mathematical models ; Micromechanics ; Moving mesh ; Multiscale methods</subject><ispartof>Computers &amp; structures, 2015-06, Vol.153, p.201-216</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-c9377f97f5ee3784b67ff1ac7c58afd8e9251743ee6f1393452ef7ba14fab0c43</citedby><cites>FETCH-LOGICAL-c348t-c9377f97f5ee3784b67ff1ac7c58afd8e9251743ee6f1393452ef7ba14fab0c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S004579491500084X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Greco, Fabrizio</creatorcontrib><creatorcontrib>Leonetti, Lorenzo</creatorcontrib><creatorcontrib>Lonetti, Paolo</creatorcontrib><creatorcontrib>Nevone Blasi, Paolo</creatorcontrib><title>Crack propagation analysis in composite materials by using moving mesh and multiscale techniques</title><title>Computers &amp; structures</title><description>•A novel multiscale method for crack propagation analysis in composites is proposed.•An adaptive model refinement is used during crack propagation to improve efficiency.•Competition between different damage mechanisms is handled during crack simulation.•Matrix cracking is modeled by a novel optimization strategy based on moving meshes.•The proposed approach is validated by original comparisons with existing methods. A novel concurrent multiscale method for the crack propagation analysis in heterogeneous materials is proposed, based on a non-overlapping domain decomposition technique coupled with an adaptive zoom-in strategy. Both fiber/matrix interfacial debonding and matrix cracking are accounted for; the latter one is modeled by using an innovative shape optimization method coupling a moving mesh technique and a gradient-free optimization solver. Numerical applications are carried out with reference to the failure analysis of a single notched fiber-reinforced composite beam subjected to both mode-I and mixed-mode crack propagation conditions. The validity of the proposed method is assessed through original comparison models.</description><subject>Composite materials</subject><subject>Computer simulation</subject><subject>Concurrent multiscale methods</subject><subject>Crack propagation</subject><subject>Fiber composites</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Interface debonding</subject><subject>Joining</subject><subject>Mathematical models</subject><subject>Micromechanics</subject><subject>Moving mesh</subject><subject>Multiscale methods</subject><issn>0045-7949</issn><issn>1879-2243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqXwG_CRS8I6duLkWFW8pEpc4Gxcd9265IXtVOq_J6GIK6e5zMzufITcMkgZsOJ-n5qu6UP0g0kzYHkKPAXIzsiMlbJKskzwczIDEHkiK1FdkqsQ9gBQCIAZ-Vh6bT5p77teb3V0XUt1q-tjcIG6lk7VXXARaaMjeqfrQNdHOgTXbmnTHX4Ew24MbWgz1NEFo2ukEc2udV8DhmtyYccU3vzqnLw_Prwtn5PV69PLcrFKDBdlTEzFpbSVtDkil6VYF9Japo00eantpsQqy5kUHLGwjFdc5BlaudZMWL0GI_ic3J16xynT3aia8Resa91iNwTFJDAooMyz0SpPVuO7EDxa1XvXaH9UDNTEVO3VH1M1MVXA1ch0TC5OSRyXHBx6FYzD1uDGeTRRbTr3b8c33m-HDA</recordid><startdate>201506</startdate><enddate>201506</enddate><creator>Greco, Fabrizio</creator><creator>Leonetti, Lorenzo</creator><creator>Lonetti, Paolo</creator><creator>Nevone Blasi, Paolo</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201506</creationdate><title>Crack propagation analysis in composite materials by using moving mesh and multiscale techniques</title><author>Greco, Fabrizio ; Leonetti, Lorenzo ; Lonetti, Paolo ; Nevone Blasi, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-c9377f97f5ee3784b67ff1ac7c58afd8e9251743ee6f1393452ef7ba14fab0c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Composite materials</topic><topic>Computer simulation</topic><topic>Concurrent multiscale methods</topic><topic>Crack propagation</topic><topic>Fiber composites</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Interface debonding</topic><topic>Joining</topic><topic>Mathematical models</topic><topic>Micromechanics</topic><topic>Moving mesh</topic><topic>Multiscale methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Greco, Fabrizio</creatorcontrib><creatorcontrib>Leonetti, Lorenzo</creatorcontrib><creatorcontrib>Lonetti, Paolo</creatorcontrib><creatorcontrib>Nevone Blasi, Paolo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greco, Fabrizio</au><au>Leonetti, Lorenzo</au><au>Lonetti, Paolo</au><au>Nevone Blasi, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crack propagation analysis in composite materials by using moving mesh and multiscale techniques</atitle><jtitle>Computers &amp; structures</jtitle><date>2015-06</date><risdate>2015</risdate><volume>153</volume><spage>201</spage><epage>216</epage><pages>201-216</pages><issn>0045-7949</issn><eissn>1879-2243</eissn><abstract>•A novel multiscale method for crack propagation analysis in composites is proposed.•An adaptive model refinement is used during crack propagation to improve efficiency.•Competition between different damage mechanisms is handled during crack simulation.•Matrix cracking is modeled by a novel optimization strategy based on moving meshes.•The proposed approach is validated by original comparisons with existing methods. A novel concurrent multiscale method for the crack propagation analysis in heterogeneous materials is proposed, based on a non-overlapping domain decomposition technique coupled with an adaptive zoom-in strategy. Both fiber/matrix interfacial debonding and matrix cracking are accounted for; the latter one is modeled by using an innovative shape optimization method coupling a moving mesh technique and a gradient-free optimization solver. Numerical applications are carried out with reference to the failure analysis of a single notched fiber-reinforced composite beam subjected to both mode-I and mixed-mode crack propagation conditions. The validity of the proposed method is assessed through original comparison models.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruc.2015.03.002</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7949
ispartof Computers & structures, 2015-06, Vol.153, p.201-216
issn 0045-7949
1879-2243
language eng
recordid cdi_proquest_miscellaneous_1701060852
source Elsevier ScienceDirect Journals
subjects Composite materials
Computer simulation
Concurrent multiscale methods
Crack propagation
Fiber composites
Finite element method
Fracture mechanics
Interface debonding
Joining
Mathematical models
Micromechanics
Moving mesh
Multiscale methods
title Crack propagation analysis in composite materials by using moving mesh and multiscale techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A30%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crack%20propagation%20analysis%20in%20composite%20materials%20by%20using%20moving%20mesh%20and%20multiscale%20techniques&rft.jtitle=Computers%20&%20structures&rft.au=Greco,%20Fabrizio&rft.date=2015-06&rft.volume=153&rft.spage=201&rft.epage=216&rft.pages=201-216&rft.issn=0045-7949&rft.eissn=1879-2243&rft_id=info:doi/10.1016/j.compstruc.2015.03.002&rft_dat=%3Cproquest_cross%3E1701060852%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701060852&rft_id=info:pmid/&rft_els_id=S004579491500084X&rfr_iscdi=true