Spatial nonuniformitv in heat transport across hybrid material interfaces

Successful thermal management in nanostructured devices relies on control of interfacial thermal transport. Recent measurements have revealed poor thermal transport across interfaces between two dissimilar materials, e.g., organic semiconductors and metals. In such systems, the interfacial thermal c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2014-08, Vol.90 (5)
Hauptverfasser: Jin, Yansha, Shao, Chen, Kieffer, John, Falk, Michael L, Shtein, Max
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Physical review. B, Condensed matter and materials physics
container_volume 90
creator Jin, Yansha
Shao, Chen
Kieffer, John
Falk, Michael L
Shtein, Max
description Successful thermal management in nanostructured devices relies on control of interfacial thermal transport. Recent measurements have revealed poor thermal transport across interfaces between two dissimilar materials, e.g., organic semiconductors and metals. In such systems, the interfacial thermal conductance Gb is dominated by the strength of interfacial bonding, but existing analytical models still fail to accurately predict Gb especially for organic-metal interfaces. Growing interest in this research area calls for comprehensive understanding of interfacial thermal transport across hybrid material interfaces. Here we demonstrate that spatial nonuniformity has to be assessed in the calculation of Gb for interfaces with partial coverage or incommensurate growth that is characteristic of these interfaces. The interface between copper phthalocyanine and fcc metals (Ag, Al, and Au) exhibits a sixfold difference between the metal's (~4-[Angstrom]) and the organic molecule's (~25-[Angstrom]) lattice constant. Molecular dynamics simulations reveal the spatial variation in Gb, and a model is developed that considers the spatial variations in phonon transmission, successfully predicting Gb for many organic-metal interfaces.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701059766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701059766</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_17010597663</originalsourceid><addsrcrecordid>eNqVi7sOgjAUQBujifj4h44uJC1QkNlodNbBjVyxhGtKi73FxL8XE3_A6ZzhnAmLpFIiTlJ1nY4uym0sZCLnbEH0EEJmZZZE7HTuISAYbp0dLDbOdxheHC1vNQQePFjqnQ8cau-IePu-ebzzDoL23w3tKA3UmlZs1oAhvf5xyTaH_WV3jHvvnoOmUHVItTYGrHYDVbIQUqiyyPP0j_QD0B1C4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701059766</pqid></control><display><type>article</type><title>Spatial nonuniformitv in heat transport across hybrid material interfaces</title><source>American Physical Society Journals</source><creator>Jin, Yansha ; Shao, Chen ; Kieffer, John ; Falk, Michael L ; Shtein, Max</creator><creatorcontrib>Jin, Yansha ; Shao, Chen ; Kieffer, John ; Falk, Michael L ; Shtein, Max</creatorcontrib><description>Successful thermal management in nanostructured devices relies on control of interfacial thermal transport. Recent measurements have revealed poor thermal transport across interfaces between two dissimilar materials, e.g., organic semiconductors and metals. In such systems, the interfacial thermal conductance Gb is dominated by the strength of interfacial bonding, but existing analytical models still fail to accurately predict Gb especially for organic-metal interfaces. Growing interest in this research area calls for comprehensive understanding of interfacial thermal transport across hybrid material interfaces. Here we demonstrate that spatial nonuniformity has to be assessed in the calculation of Gb for interfaces with partial coverage or incommensurate growth that is characteristic of these interfaces. The interface between copper phthalocyanine and fcc metals (Ag, Al, and Au) exhibits a sixfold difference between the metal's (~4-[Angstrom]) and the organic molecule's (~25-[Angstrom]) lattice constant. Molecular dynamics simulations reveal the spatial variation in Gb, and a model is developed that considers the spatial variations in phonon transmission, successfully predicting Gb for many organic-metal interfaces.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><language>eng</language><subject>COMPUTER SIMULATION ; Condensed matter ; COPPER PHTHALOCYANINE ; Devices ; ELECTRONIC PRODUCTS ; INTERFACES ; MATHEMATICAL ANALYSIS ; Mathematical models ; MICROSTRUCTURES ; Molecular dynamics ; Nanostructure ; Thermal conductivity ; Thermal management ; Transport</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2014-08, Vol.90 (5)</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Jin, Yansha</creatorcontrib><creatorcontrib>Shao, Chen</creatorcontrib><creatorcontrib>Kieffer, John</creatorcontrib><creatorcontrib>Falk, Michael L</creatorcontrib><creatorcontrib>Shtein, Max</creatorcontrib><title>Spatial nonuniformitv in heat transport across hybrid material interfaces</title><title>Physical review. B, Condensed matter and materials physics</title><description>Successful thermal management in nanostructured devices relies on control of interfacial thermal transport. Recent measurements have revealed poor thermal transport across interfaces between two dissimilar materials, e.g., organic semiconductors and metals. In such systems, the interfacial thermal conductance Gb is dominated by the strength of interfacial bonding, but existing analytical models still fail to accurately predict Gb especially for organic-metal interfaces. Growing interest in this research area calls for comprehensive understanding of interfacial thermal transport across hybrid material interfaces. Here we demonstrate that spatial nonuniformity has to be assessed in the calculation of Gb for interfaces with partial coverage or incommensurate growth that is characteristic of these interfaces. The interface between copper phthalocyanine and fcc metals (Ag, Al, and Au) exhibits a sixfold difference between the metal's (~4-[Angstrom]) and the organic molecule's (~25-[Angstrom]) lattice constant. Molecular dynamics simulations reveal the spatial variation in Gb, and a model is developed that considers the spatial variations in phonon transmission, successfully predicting Gb for many organic-metal interfaces.</description><subject>COMPUTER SIMULATION</subject><subject>Condensed matter</subject><subject>COPPER PHTHALOCYANINE</subject><subject>Devices</subject><subject>ELECTRONIC PRODUCTS</subject><subject>INTERFACES</subject><subject>MATHEMATICAL ANALYSIS</subject><subject>Mathematical models</subject><subject>MICROSTRUCTURES</subject><subject>Molecular dynamics</subject><subject>Nanostructure</subject><subject>Thermal conductivity</subject><subject>Thermal management</subject><subject>Transport</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqVi7sOgjAUQBujifj4h44uJC1QkNlodNbBjVyxhGtKi73FxL8XE3_A6ZzhnAmLpFIiTlJ1nY4uym0sZCLnbEH0EEJmZZZE7HTuISAYbp0dLDbOdxheHC1vNQQePFjqnQ8cau-IePu-ebzzDoL23w3tKA3UmlZs1oAhvf5xyTaH_WV3jHvvnoOmUHVItTYGrHYDVbIQUqiyyPP0j_QD0B1C4Q</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Jin, Yansha</creator><creator>Shao, Chen</creator><creator>Kieffer, John</creator><creator>Falk, Michael L</creator><creator>Shtein, Max</creator><scope>7QF</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140801</creationdate><title>Spatial nonuniformitv in heat transport across hybrid material interfaces</title><author>Jin, Yansha ; Shao, Chen ; Kieffer, John ; Falk, Michael L ; Shtein, Max</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_17010597663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>COMPUTER SIMULATION</topic><topic>Condensed matter</topic><topic>COPPER PHTHALOCYANINE</topic><topic>Devices</topic><topic>ELECTRONIC PRODUCTS</topic><topic>INTERFACES</topic><topic>MATHEMATICAL ANALYSIS</topic><topic>Mathematical models</topic><topic>MICROSTRUCTURES</topic><topic>Molecular dynamics</topic><topic>Nanostructure</topic><topic>Thermal conductivity</topic><topic>Thermal management</topic><topic>Transport</topic><toplevel>online_resources</toplevel><creatorcontrib>Jin, Yansha</creatorcontrib><creatorcontrib>Shao, Chen</creatorcontrib><creatorcontrib>Kieffer, John</creatorcontrib><creatorcontrib>Falk, Michael L</creatorcontrib><creatorcontrib>Shtein, Max</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Yansha</au><au>Shao, Chen</au><au>Kieffer, John</au><au>Falk, Michael L</au><au>Shtein, Max</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial nonuniformitv in heat transport across hybrid material interfaces</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>90</volume><issue>5</issue><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>Successful thermal management in nanostructured devices relies on control of interfacial thermal transport. Recent measurements have revealed poor thermal transport across interfaces between two dissimilar materials, e.g., organic semiconductors and metals. In such systems, the interfacial thermal conductance Gb is dominated by the strength of interfacial bonding, but existing analytical models still fail to accurately predict Gb especially for organic-metal interfaces. Growing interest in this research area calls for comprehensive understanding of interfacial thermal transport across hybrid material interfaces. Here we demonstrate that spatial nonuniformity has to be assessed in the calculation of Gb for interfaces with partial coverage or incommensurate growth that is characteristic of these interfaces. The interface between copper phthalocyanine and fcc metals (Ag, Al, and Au) exhibits a sixfold difference between the metal's (~4-[Angstrom]) and the organic molecule's (~25-[Angstrom]) lattice constant. Molecular dynamics simulations reveal the spatial variation in Gb, and a model is developed that considers the spatial variations in phonon transmission, successfully predicting Gb for many organic-metal interfaces.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 1098-0121
ispartof Physical review. B, Condensed matter and materials physics, 2014-08, Vol.90 (5)
issn 1098-0121
1550-235X
language eng
recordid cdi_proquest_miscellaneous_1701059766
source American Physical Society Journals
subjects COMPUTER SIMULATION
Condensed matter
COPPER PHTHALOCYANINE
Devices
ELECTRONIC PRODUCTS
INTERFACES
MATHEMATICAL ANALYSIS
Mathematical models
MICROSTRUCTURES
Molecular dynamics
Nanostructure
Thermal conductivity
Thermal management
Transport
title Spatial nonuniformitv in heat transport across hybrid material interfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A47%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20nonuniformitv%20in%20heat%20transport%20across%20hybrid%20material%20interfaces&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Jin,%20Yansha&rft.date=2014-08-01&rft.volume=90&rft.issue=5&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/&rft_dat=%3Cproquest%3E1701059766%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701059766&rft_id=info:pmid/&rfr_iscdi=true