Assessing exceedance of ozone standards: a space-time downscaler for fourth highest ozone concentrations

The US Environmental Protection Agency is required to monitor, regulate, and set national ambient air quality standards for ozone. To investigate ozone exposure, the Environmental Protection Agency utilizes monitoring devices along with estimates of gridded ground level ozone concentration produced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmetrics (London, Ont.) Ont.), 2014-06, Vol.25 (4), p.279-291
Hauptverfasser: Berrocal, V.J., Gelfand, A.E., Holland, D.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 291
container_issue 4
container_start_page 279
container_title Environmetrics (London, Ont.)
container_volume 25
creator Berrocal, V.J.
Gelfand, A.E.
Holland, D.M.
description The US Environmental Protection Agency is required to monitor, regulate, and set national ambient air quality standards for ozone. To investigate ozone exposure, the Environmental Protection Agency utilizes monitoring devices along with estimates of gridded ground level ozone concentration produced by a deterministic air quality model, the Community Multiscale Air Quality Model. These two sources of information enable inference regarding spatial exceedance of the National Ambient Air Quality Standard for ozone, which is given in terms of the level of the annual fourth highest ozone concentration.Here, we extend previous downscaling work to propose a spatial fourth highest extreme value downscaling model to assimilate annual fourth highest ozone concentration data at geo‐coded locations with estimates at grid cell level derived from the Community Multiscale Air Quality Model model output. The resulting inference enables us to make probabilistic statements, with associated uncertainty, about the spatial variation in the chance of exceeding the standard. We apply our approach to data in the Eastern USA during years 2001–2008 and compare its predictive performance to that of downscaler models based on Gaussian processes applied to daily data. Copyright © 2014 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/env.2273
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701052046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1547845645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4033-6234e5b6d7112bcb1d91c7b7b64c0f166ad3569d9cfc6a11281e8b91f60b11733</originalsourceid><addsrcrecordid>eNqF0E1P3DAQBuAIFQlKK_Un-MglMBPH9oYbQnSpRLdSxUfVi-U4EzaQtbeeLLD99c0KRMUBcRjNHJ4Zjd4s-4JwgADFIYX7g6IwcivbRaiqHCr168M44wTyEqDayT4y38I4aWV2s_kxMzF34UbQoydqXPAkYivi3xhI8OBC41LDR8IJXjpP-dAtSDTxIbB3PSXRxk2t0jAX8-5mTjw87_o4ngpDckMXA3_KtlvXM31-7nvZ5dfTi5Oz_PzH9NvJ8XnuS5Ay14UsSdW6MYhF7WtsKvSmNrUuPbSotWuk0lVT-dZrN5oJ0qSusNVQIxop97L9p7vLFP-sxm_somNPfe8CxRVbNICgCij1-1SVZlIqXar_1KfInKi1y9QtXFpbBLvJ3Y65203uI82f6EPX0_pNZ09nV699xwM9vniX7qw20ih7PZvan9cXV1B8R_tb_gNDjZQa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547845645</pqid></control><display><type>article</type><title>Assessing exceedance of ozone standards: a space-time downscaler for fourth highest ozone concentrations</title><source>Wiley Online Library All Journals</source><creator>Berrocal, V.J. ; Gelfand, A.E. ; Holland, D.M.</creator><creatorcontrib>Berrocal, V.J. ; Gelfand, A.E. ; Holland, D.M.</creatorcontrib><description>The US Environmental Protection Agency is required to monitor, regulate, and set national ambient air quality standards for ozone. To investigate ozone exposure, the Environmental Protection Agency utilizes monitoring devices along with estimates of gridded ground level ozone concentration produced by a deterministic air quality model, the Community Multiscale Air Quality Model. These two sources of information enable inference regarding spatial exceedance of the National Ambient Air Quality Standard for ozone, which is given in terms of the level of the annual fourth highest ozone concentration.Here, we extend previous downscaling work to propose a spatial fourth highest extreme value downscaling model to assimilate annual fourth highest ozone concentration data at geo‐coded locations with estimates at grid cell level derived from the Community Multiscale Air Quality Model model output. The resulting inference enables us to make probabilistic statements, with associated uncertainty, about the spatial variation in the chance of exceeding the standard. We apply our approach to data in the Eastern USA during years 2001–2008 and compare its predictive performance to that of downscaler models based on Gaussian processes applied to daily data. Copyright © 2014 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1180-4009</identifier><identifier>EISSN: 1099-095X</identifier><identifier>DOI: 10.1002/env.2273</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Air quality ; change of support ; Communities ; data fusion ; Estimates ; Gaussian ; hierarchical modeling ; Inference ; Markov chain Monte Carlo ; Mathematical models ; national ambient air quality standards (NAAQS) ; Ozone ; r-th largest order statistic distribution</subject><ispartof>Environmetrics (London, Ont.), 2014-06, Vol.25 (4), p.279-291</ispartof><rights>Copyright © 2014 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4033-6234e5b6d7112bcb1d91c7b7b64c0f166ad3569d9cfc6a11281e8b91f60b11733</citedby><cites>FETCH-LOGICAL-c4033-6234e5b6d7112bcb1d91c7b7b64c0f166ad3569d9cfc6a11281e8b91f60b11733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fenv.2273$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fenv.2273$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Berrocal, V.J.</creatorcontrib><creatorcontrib>Gelfand, A.E.</creatorcontrib><creatorcontrib>Holland, D.M.</creatorcontrib><title>Assessing exceedance of ozone standards: a space-time downscaler for fourth highest ozone concentrations</title><title>Environmetrics (London, Ont.)</title><addtitle>Environmetrics</addtitle><description>The US Environmental Protection Agency is required to monitor, regulate, and set national ambient air quality standards for ozone. To investigate ozone exposure, the Environmental Protection Agency utilizes monitoring devices along with estimates of gridded ground level ozone concentration produced by a deterministic air quality model, the Community Multiscale Air Quality Model. These two sources of information enable inference regarding spatial exceedance of the National Ambient Air Quality Standard for ozone, which is given in terms of the level of the annual fourth highest ozone concentration.Here, we extend previous downscaling work to propose a spatial fourth highest extreme value downscaling model to assimilate annual fourth highest ozone concentration data at geo‐coded locations with estimates at grid cell level derived from the Community Multiscale Air Quality Model model output. The resulting inference enables us to make probabilistic statements, with associated uncertainty, about the spatial variation in the chance of exceeding the standard. We apply our approach to data in the Eastern USA during years 2001–2008 and compare its predictive performance to that of downscaler models based on Gaussian processes applied to daily data. Copyright © 2014 John Wiley &amp; Sons, Ltd.</description><subject>Air quality</subject><subject>change of support</subject><subject>Communities</subject><subject>data fusion</subject><subject>Estimates</subject><subject>Gaussian</subject><subject>hierarchical modeling</subject><subject>Inference</subject><subject>Markov chain Monte Carlo</subject><subject>Mathematical models</subject><subject>national ambient air quality standards (NAAQS)</subject><subject>Ozone</subject><subject>r-th largest order statistic distribution</subject><issn>1180-4009</issn><issn>1099-095X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqF0E1P3DAQBuAIFQlKK_Un-MglMBPH9oYbQnSpRLdSxUfVi-U4EzaQtbeeLLD99c0KRMUBcRjNHJ4Zjd4s-4JwgADFIYX7g6IwcivbRaiqHCr168M44wTyEqDayT4y38I4aWV2s_kxMzF34UbQoydqXPAkYivi3xhI8OBC41LDR8IJXjpP-dAtSDTxIbB3PSXRxk2t0jAX8-5mTjw87_o4ngpDckMXA3_KtlvXM31-7nvZ5dfTi5Oz_PzH9NvJ8XnuS5Ay14UsSdW6MYhF7WtsKvSmNrUuPbSotWuk0lVT-dZrN5oJ0qSusNVQIxop97L9p7vLFP-sxm_somNPfe8CxRVbNICgCij1-1SVZlIqXar_1KfInKi1y9QtXFpbBLvJ3Y65203uI82f6EPX0_pNZ09nV699xwM9vniX7qw20ih7PZvan9cXV1B8R_tb_gNDjZQa</recordid><startdate>201406</startdate><enddate>201406</enddate><creator>Berrocal, V.J.</creator><creator>Gelfand, A.E.</creator><creator>Holland, D.M.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7TV</scope><scope>C1K</scope><scope>KL.</scope><scope>SOI</scope><scope>7SU</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201406</creationdate><title>Assessing exceedance of ozone standards: a space-time downscaler for fourth highest ozone concentrations</title><author>Berrocal, V.J. ; Gelfand, A.E. ; Holland, D.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4033-6234e5b6d7112bcb1d91c7b7b64c0f166ad3569d9cfc6a11281e8b91f60b11733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Air quality</topic><topic>change of support</topic><topic>Communities</topic><topic>data fusion</topic><topic>Estimates</topic><topic>Gaussian</topic><topic>hierarchical modeling</topic><topic>Inference</topic><topic>Markov chain Monte Carlo</topic><topic>Mathematical models</topic><topic>national ambient air quality standards (NAAQS)</topic><topic>Ozone</topic><topic>r-th largest order statistic distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berrocal, V.J.</creatorcontrib><creatorcontrib>Gelfand, A.E.</creatorcontrib><creatorcontrib>Holland, D.M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Environmetrics (London, Ont.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berrocal, V.J.</au><au>Gelfand, A.E.</au><au>Holland, D.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing exceedance of ozone standards: a space-time downscaler for fourth highest ozone concentrations</atitle><jtitle>Environmetrics (London, Ont.)</jtitle><addtitle>Environmetrics</addtitle><date>2014-06</date><risdate>2014</risdate><volume>25</volume><issue>4</issue><spage>279</spage><epage>291</epage><pages>279-291</pages><issn>1180-4009</issn><eissn>1099-095X</eissn><abstract>The US Environmental Protection Agency is required to monitor, regulate, and set national ambient air quality standards for ozone. To investigate ozone exposure, the Environmental Protection Agency utilizes monitoring devices along with estimates of gridded ground level ozone concentration produced by a deterministic air quality model, the Community Multiscale Air Quality Model. These two sources of information enable inference regarding spatial exceedance of the National Ambient Air Quality Standard for ozone, which is given in terms of the level of the annual fourth highest ozone concentration.Here, we extend previous downscaling work to propose a spatial fourth highest extreme value downscaling model to assimilate annual fourth highest ozone concentration data at geo‐coded locations with estimates at grid cell level derived from the Community Multiscale Air Quality Model model output. The resulting inference enables us to make probabilistic statements, with associated uncertainty, about the spatial variation in the chance of exceeding the standard. We apply our approach to data in the Eastern USA during years 2001–2008 and compare its predictive performance to that of downscaler models based on Gaussian processes applied to daily data. Copyright © 2014 John Wiley &amp; Sons, Ltd.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/env.2273</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1180-4009
ispartof Environmetrics (London, Ont.), 2014-06, Vol.25 (4), p.279-291
issn 1180-4009
1099-095X
language eng
recordid cdi_proquest_miscellaneous_1701052046
source Wiley Online Library All Journals
subjects Air quality
change of support
Communities
data fusion
Estimates
Gaussian
hierarchical modeling
Inference
Markov chain Monte Carlo
Mathematical models
national ambient air quality standards (NAAQS)
Ozone
r-th largest order statistic distribution
title Assessing exceedance of ozone standards: a space-time downscaler for fourth highest ozone concentrations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A26%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20exceedance%20of%20ozone%20standards:%20a%20space-time%20downscaler%20for%20fourth%20highest%20ozone%20concentrations&rft.jtitle=Environmetrics%20(London,%20Ont.)&rft.au=Berrocal,%20V.J.&rft.date=2014-06&rft.volume=25&rft.issue=4&rft.spage=279&rft.epage=291&rft.pages=279-291&rft.issn=1180-4009&rft.eissn=1099-095X&rft_id=info:doi/10.1002/env.2273&rft_dat=%3Cproquest_cross%3E1547845645%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1547845645&rft_id=info:pmid/&rfr_iscdi=true