New transformer fault diagnosis method based on multi-class relevance vector machine

The transformer fault diagnosis is naturally a multi-classification problem with few sample data and a lot of uncertainties. Among the existing transformer fault diagnosis methods, a large number of sample data and amount of computation are needed for Bayesian Network (BN), and the adjustment of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dianli Xitong Baohu yu Kongzhi 2013-03, Vol.41 (5), p.77-82
Hauptverfasser: Yin, Jin-Liang, Zhu, Yong-Li, Yu, Guo-Qin
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 82
container_issue 5
container_start_page 77
container_title Dianli Xitong Baohu yu Kongzhi
container_volume 41
creator Yin, Jin-Liang
Zhu, Yong-Li
Yu, Guo-Qin
description The transformer fault diagnosis is naturally a multi-classification problem with few sample data and a lot of uncertainties. Among the existing transformer fault diagnosis methods, a large number of sample data and amount of computation are needed for Bayesian Network (BN), and the adjustment of the coefficient is difficult for support vector machine (SVM). So a new method of transformer fault diagnosis based on multi-class relevance vector machine (M-RVM) is proposed. The method takes ratios of feature gases as inputs and Fast Type-II ML and expectation maximization (EM) are adopted. Diagnostic outputs are probability for each fault category and fault type with the highest probability is taken as diagnosis result. Experimental results show that the diagnosis speed is sufficient for project needs and M-RVM shows higher diagnosis accuracy compared with BN and SVM.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701051134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701051134</sourcerecordid><originalsourceid>FETCH-LOGICAL-p136t-f530f286290f220e9f641f87f5e83b72528fc396ec070970baa26fd43a336cf3</originalsourceid><addsrcrecordid>eNqFjLtuwyAUQBlaqVGaf2DsYgm45uGxivqSonbxHmF8aZAwpIDT32-kdu90hnN0bsiGK9130HN5R3a1hokx4FIqM2zI-I7ftBWbqs9lwUK9XWOjc7CfKddQ6YLtlGc62YozzYkuVx06F22ttGDEi00O6QVdy4Uu1p1Cwnty622suPvjlozPT-P-tTt8vLztHw_dmYNqnZfAvDBKDFcIhoNXPfdGe4kGJi2kMN7BoNAxzQbNJmuF8nMPFkA5D1vy8Ls9l_y1Ym3HJVSHMdqEea1HrhlnknPo_09BSS6kEQA_gxFcFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365125823</pqid></control><display><type>article</type><title>New transformer fault diagnosis method based on multi-class relevance vector machine</title><source>DOAJ Directory of Open Access Journals</source><creator>Yin, Jin-Liang ; Zhu, Yong-Li ; Yu, Guo-Qin</creator><creatorcontrib>Yin, Jin-Liang ; Zhu, Yong-Li ; Yu, Guo-Qin</creatorcontrib><description>The transformer fault diagnosis is naturally a multi-classification problem with few sample data and a lot of uncertainties. Among the existing transformer fault diagnosis methods, a large number of sample data and amount of computation are needed for Bayesian Network (BN), and the adjustment of the coefficient is difficult for support vector machine (SVM). So a new method of transformer fault diagnosis based on multi-class relevance vector machine (M-RVM) is proposed. The method takes ratios of feature gases as inputs and Fast Type-II ML and expectation maximization (EM) are adopted. Diagnostic outputs are probability for each fault category and fault type with the highest probability is taken as diagnosis result. Experimental results show that the diagnosis speed is sufficient for project needs and M-RVM shows higher diagnosis accuracy compared with BN and SVM.</description><identifier>ISSN: 1674-3415</identifier><language>chi</language><subject>Boron nitride ; Diagnosis ; Fault diagnosis ; Faults ; Mathematical analysis ; Support vector machines ; Transformers ; Vectors (mathematics)</subject><ispartof>Dianli Xitong Baohu yu Kongzhi, 2013-03, Vol.41 (5), p.77-82</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781</link.rule.ids></links><search><creatorcontrib>Yin, Jin-Liang</creatorcontrib><creatorcontrib>Zhu, Yong-Li</creatorcontrib><creatorcontrib>Yu, Guo-Qin</creatorcontrib><title>New transformer fault diagnosis method based on multi-class relevance vector machine</title><title>Dianli Xitong Baohu yu Kongzhi</title><description>The transformer fault diagnosis is naturally a multi-classification problem with few sample data and a lot of uncertainties. Among the existing transformer fault diagnosis methods, a large number of sample data and amount of computation are needed for Bayesian Network (BN), and the adjustment of the coefficient is difficult for support vector machine (SVM). So a new method of transformer fault diagnosis based on multi-class relevance vector machine (M-RVM) is proposed. The method takes ratios of feature gases as inputs and Fast Type-II ML and expectation maximization (EM) are adopted. Diagnostic outputs are probability for each fault category and fault type with the highest probability is taken as diagnosis result. Experimental results show that the diagnosis speed is sufficient for project needs and M-RVM shows higher diagnosis accuracy compared with BN and SVM.</description><subject>Boron nitride</subject><subject>Diagnosis</subject><subject>Fault diagnosis</subject><subject>Faults</subject><subject>Mathematical analysis</subject><subject>Support vector machines</subject><subject>Transformers</subject><subject>Vectors (mathematics)</subject><issn>1674-3415</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFjLtuwyAUQBlaqVGaf2DsYgm45uGxivqSonbxHmF8aZAwpIDT32-kdu90hnN0bsiGK9130HN5R3a1hokx4FIqM2zI-I7ftBWbqs9lwUK9XWOjc7CfKddQ6YLtlGc62YozzYkuVx06F22ttGDEi00O6QVdy4Uu1p1Cwnty622suPvjlozPT-P-tTt8vLztHw_dmYNqnZfAvDBKDFcIhoNXPfdGe4kGJi2kMN7BoNAxzQbNJmuF8nMPFkA5D1vy8Ls9l_y1Ym3HJVSHMdqEea1HrhlnknPo_09BSS6kEQA_gxFcFw</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Yin, Jin-Liang</creator><creator>Zhu, Yong-Li</creator><creator>Yu, Guo-Qin</creator><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130301</creationdate><title>New transformer fault diagnosis method based on multi-class relevance vector machine</title><author>Yin, Jin-Liang ; Zhu, Yong-Li ; Yu, Guo-Qin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p136t-f530f286290f220e9f641f87f5e83b72528fc396ec070970baa26fd43a336cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2013</creationdate><topic>Boron nitride</topic><topic>Diagnosis</topic><topic>Fault diagnosis</topic><topic>Faults</topic><topic>Mathematical analysis</topic><topic>Support vector machines</topic><topic>Transformers</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Jin-Liang</creatorcontrib><creatorcontrib>Zhu, Yong-Li</creatorcontrib><creatorcontrib>Yu, Guo-Qin</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Dianli Xitong Baohu yu Kongzhi</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Jin-Liang</au><au>Zhu, Yong-Li</au><au>Yu, Guo-Qin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New transformer fault diagnosis method based on multi-class relevance vector machine</atitle><jtitle>Dianli Xitong Baohu yu Kongzhi</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>41</volume><issue>5</issue><spage>77</spage><epage>82</epage><pages>77-82</pages><issn>1674-3415</issn><abstract>The transformer fault diagnosis is naturally a multi-classification problem with few sample data and a lot of uncertainties. Among the existing transformer fault diagnosis methods, a large number of sample data and amount of computation are needed for Bayesian Network (BN), and the adjustment of the coefficient is difficult for support vector machine (SVM). So a new method of transformer fault diagnosis based on multi-class relevance vector machine (M-RVM) is proposed. The method takes ratios of feature gases as inputs and Fast Type-II ML and expectation maximization (EM) are adopted. Diagnostic outputs are probability for each fault category and fault type with the highest probability is taken as diagnosis result. Experimental results show that the diagnosis speed is sufficient for project needs and M-RVM shows higher diagnosis accuracy compared with BN and SVM.</abstract><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-3415
ispartof Dianli Xitong Baohu yu Kongzhi, 2013-03, Vol.41 (5), p.77-82
issn 1674-3415
language chi
recordid cdi_proquest_miscellaneous_1701051134
source DOAJ Directory of Open Access Journals
subjects Boron nitride
Diagnosis
Fault diagnosis
Faults
Mathematical analysis
Support vector machines
Transformers
Vectors (mathematics)
title New transformer fault diagnosis method based on multi-class relevance vector machine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A01%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20transformer%20fault%20diagnosis%20method%20based%20on%20multi-class%20relevance%20vector%20machine&rft.jtitle=Dianli%20Xitong%20Baohu%20yu%20Kongzhi&rft.au=Yin,%20Jin-Liang&rft.date=2013-03-01&rft.volume=41&rft.issue=5&rft.spage=77&rft.epage=82&rft.pages=77-82&rft.issn=1674-3415&rft_id=info:doi/&rft_dat=%3Cproquest%3E1701051134%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365125823&rft_id=info:pmid/&rfr_iscdi=true