Relating grain size to the Zener–Hollomon parameter for twin-roll-cast AZ31B alloy refined by friction stir processing

An experimentally verified finite element model was used to estimate the strain rate and the temperature values which were, consequently, used in calculating the Zener–Hollomon parameter, Z-parameter, of twin-roll-cast (TRC) AZ31B after being refined by FSP (using range of spindle speeds of 600–2000...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials processing technology 2015-08, Vol.222, p.301-306
Hauptverfasser: Ammouri, A.H., Kridli, G., Ayoub, G., Hamade, R.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 306
container_issue
container_start_page 301
container_title Journal of materials processing technology
container_volume 222
creator Ammouri, A.H.
Kridli, G.
Ayoub, G.
Hamade, R.F.
description An experimentally verified finite element model was used to estimate the strain rate and the temperature values which were, consequently, used in calculating the Zener–Hollomon parameter, Z-parameter, of twin-roll-cast (TRC) AZ31B after being refined by FSP (using range of spindle speeds of 600–2000rpm and tool feed rates ranging from 75 to 900mm/min). In the finite element model, an HCP specific Zerilli–Armstrong constitutive relation was used to describe the mechanical behavior of AZ31B. The resulting grain size values were experimentally measured for the observed microstructure of all processed samples. Dynamic recrystallization was identified to be the main mechanism involved in the grain refinement. A linear relation of the form lnd=a×lnZ+b was determined relating the average grain size (d) to the Z-parameter with a and b being equal to −0.23 and 8.79, respectively. These coefficients differed from values reported by others for AZ31 magnesium alloy with this difference being attributed to different material processing techniques used in the as-received condition. The resulting equation can be used in controlling the grain size during friction stir processing by varying the process parameters (spindle speed and tool feed) that would in turn affect the instantaneous value of the Zener–Hollomon parameter.
doi_str_mv 10.1016/j.jmatprotec.2015.02.037
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701049638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924013615000874</els_id><sourcerecordid>1701049638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-5ad1bb32c8899ef19cb98c20f5a4bca626d66f621f8be651dc1fc637c27d1613</originalsourceid><addsrcrecordid>eNqFkE1OwzAQhbMACSjcwUs2CR6ndZIlIP6kSkioKzaWMxmDqyQutguUFXfghpwEV0ViyWoW896beV-WMeAFcJBny2I56LjyLhIWgsOs4KLgZbWXHfJGTHMOpTzIjkJYcg4Vr-vD7P2Beh3t-MSevLYjC_aDWHQsPhN7pJH89-fXret7N7iRrbTXA0XyzDjP4psdc592OeoQ2fljCRdMJ-mGeTJ2pI61G2a8xWiTOUTrWfoNKYR07zjbN7oPdPI7J9ni-mpxeZvP72_uLs_nOU6hivlMd9C2pcC6bhoy0GDb1Ci4melpi1oK2UlppABTtyRn0CEYlGWFoupAQjnJTnex6fLLmkJUgw1Ifa9HcuugEgbg00aWdZLWOyl6F0KqoFbeDtpvFHC15auW6o-v2vJVXKjEN1kvdlZKTV4teRXQ0ojUWU8YVefs_yE_OZ2OsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701049638</pqid></control><display><type>article</type><title>Relating grain size to the Zener–Hollomon parameter for twin-roll-cast AZ31B alloy refined by friction stir processing</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ammouri, A.H. ; Kridli, G. ; Ayoub, G. ; Hamade, R.F.</creator><creatorcontrib>Ammouri, A.H. ; Kridli, G. ; Ayoub, G. ; Hamade, R.F.</creatorcontrib><description>An experimentally verified finite element model was used to estimate the strain rate and the temperature values which were, consequently, used in calculating the Zener–Hollomon parameter, Z-parameter, of twin-roll-cast (TRC) AZ31B after being refined by FSP (using range of spindle speeds of 600–2000rpm and tool feed rates ranging from 75 to 900mm/min). In the finite element model, an HCP specific Zerilli–Armstrong constitutive relation was used to describe the mechanical behavior of AZ31B. The resulting grain size values were experimentally measured for the observed microstructure of all processed samples. Dynamic recrystallization was identified to be the main mechanism involved in the grain refinement. A linear relation of the form lnd=a×lnZ+b was determined relating the average grain size (d) to the Z-parameter with a and b being equal to −0.23 and 8.79, respectively. These coefficients differed from values reported by others for AZ31 magnesium alloy with this difference being attributed to different material processing techniques used in the as-received condition. The resulting equation can be used in controlling the grain size during friction stir processing by varying the process parameters (spindle speed and tool feed) that would in turn affect the instantaneous value of the Zener–Hollomon parameter.</description><identifier>ISSN: 0924-0136</identifier><identifier>DOI: 10.1016/j.jmatprotec.2015.02.037</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Dynamic recrystallization ; Finite element method ; Friction stir processing ; Grain size ; Magnesium base alloys ; Materials processing ; Mathematical analysis ; Mathematical models ; Spindles ; Twin-roll-cast AZ31B ; Zener–Hollomon parameter</subject><ispartof>Journal of materials processing technology, 2015-08, Vol.222, p.301-306</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-5ad1bb32c8899ef19cb98c20f5a4bca626d66f621f8be651dc1fc637c27d1613</citedby><cites>FETCH-LOGICAL-c417t-5ad1bb32c8899ef19cb98c20f5a4bca626d66f621f8be651dc1fc637c27d1613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmatprotec.2015.02.037$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Ammouri, A.H.</creatorcontrib><creatorcontrib>Kridli, G.</creatorcontrib><creatorcontrib>Ayoub, G.</creatorcontrib><creatorcontrib>Hamade, R.F.</creatorcontrib><title>Relating grain size to the Zener–Hollomon parameter for twin-roll-cast AZ31B alloy refined by friction stir processing</title><title>Journal of materials processing technology</title><description>An experimentally verified finite element model was used to estimate the strain rate and the temperature values which were, consequently, used in calculating the Zener–Hollomon parameter, Z-parameter, of twin-roll-cast (TRC) AZ31B after being refined by FSP (using range of spindle speeds of 600–2000rpm and tool feed rates ranging from 75 to 900mm/min). In the finite element model, an HCP specific Zerilli–Armstrong constitutive relation was used to describe the mechanical behavior of AZ31B. The resulting grain size values were experimentally measured for the observed microstructure of all processed samples. Dynamic recrystallization was identified to be the main mechanism involved in the grain refinement. A linear relation of the form lnd=a×lnZ+b was determined relating the average grain size (d) to the Z-parameter with a and b being equal to −0.23 and 8.79, respectively. These coefficients differed from values reported by others for AZ31 magnesium alloy with this difference being attributed to different material processing techniques used in the as-received condition. The resulting equation can be used in controlling the grain size during friction stir processing by varying the process parameters (spindle speed and tool feed) that would in turn affect the instantaneous value of the Zener–Hollomon parameter.</description><subject>Dynamic recrystallization</subject><subject>Finite element method</subject><subject>Friction stir processing</subject><subject>Grain size</subject><subject>Magnesium base alloys</subject><subject>Materials processing</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Spindles</subject><subject>Twin-roll-cast AZ31B</subject><subject>Zener–Hollomon parameter</subject><issn>0924-0136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAQhbMACSjcwUs2CR6ndZIlIP6kSkioKzaWMxmDqyQutguUFXfghpwEV0ViyWoW896beV-WMeAFcJBny2I56LjyLhIWgsOs4KLgZbWXHfJGTHMOpTzIjkJYcg4Vr-vD7P2Beh3t-MSevLYjC_aDWHQsPhN7pJH89-fXret7N7iRrbTXA0XyzDjP4psdc592OeoQ2fljCRdMJ-mGeTJ2pI61G2a8xWiTOUTrWfoNKYR07zjbN7oPdPI7J9ni-mpxeZvP72_uLs_nOU6hivlMd9C2pcC6bhoy0GDb1Ci4melpi1oK2UlppABTtyRn0CEYlGWFoupAQjnJTnex6fLLmkJUgw1Ifa9HcuugEgbg00aWdZLWOyl6F0KqoFbeDtpvFHC15auW6o-v2vJVXKjEN1kvdlZKTV4teRXQ0ojUWU8YVefs_yE_OZ2OsQ</recordid><startdate>201508</startdate><enddate>201508</enddate><creator>Ammouri, A.H.</creator><creator>Kridli, G.</creator><creator>Ayoub, G.</creator><creator>Hamade, R.F.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201508</creationdate><title>Relating grain size to the Zener–Hollomon parameter for twin-roll-cast AZ31B alloy refined by friction stir processing</title><author>Ammouri, A.H. ; Kridli, G. ; Ayoub, G. ; Hamade, R.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-5ad1bb32c8899ef19cb98c20f5a4bca626d66f621f8be651dc1fc637c27d1613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Dynamic recrystallization</topic><topic>Finite element method</topic><topic>Friction stir processing</topic><topic>Grain size</topic><topic>Magnesium base alloys</topic><topic>Materials processing</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Spindles</topic><topic>Twin-roll-cast AZ31B</topic><topic>Zener–Hollomon parameter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ammouri, A.H.</creatorcontrib><creatorcontrib>Kridli, G.</creatorcontrib><creatorcontrib>Ayoub, G.</creatorcontrib><creatorcontrib>Hamade, R.F.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials processing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ammouri, A.H.</au><au>Kridli, G.</au><au>Ayoub, G.</au><au>Hamade, R.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relating grain size to the Zener–Hollomon parameter for twin-roll-cast AZ31B alloy refined by friction stir processing</atitle><jtitle>Journal of materials processing technology</jtitle><date>2015-08</date><risdate>2015</risdate><volume>222</volume><spage>301</spage><epage>306</epage><pages>301-306</pages><issn>0924-0136</issn><abstract>An experimentally verified finite element model was used to estimate the strain rate and the temperature values which were, consequently, used in calculating the Zener–Hollomon parameter, Z-parameter, of twin-roll-cast (TRC) AZ31B after being refined by FSP (using range of spindle speeds of 600–2000rpm and tool feed rates ranging from 75 to 900mm/min). In the finite element model, an HCP specific Zerilli–Armstrong constitutive relation was used to describe the mechanical behavior of AZ31B. The resulting grain size values were experimentally measured for the observed microstructure of all processed samples. Dynamic recrystallization was identified to be the main mechanism involved in the grain refinement. A linear relation of the form lnd=a×lnZ+b was determined relating the average grain size (d) to the Z-parameter with a and b being equal to −0.23 and 8.79, respectively. These coefficients differed from values reported by others for AZ31 magnesium alloy with this difference being attributed to different material processing techniques used in the as-received condition. The resulting equation can be used in controlling the grain size during friction stir processing by varying the process parameters (spindle speed and tool feed) that would in turn affect the instantaneous value of the Zener–Hollomon parameter.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jmatprotec.2015.02.037</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-0136
ispartof Journal of materials processing technology, 2015-08, Vol.222, p.301-306
issn 0924-0136
language eng
recordid cdi_proquest_miscellaneous_1701049638
source ScienceDirect Journals (5 years ago - present)
subjects Dynamic recrystallization
Finite element method
Friction stir processing
Grain size
Magnesium base alloys
Materials processing
Mathematical analysis
Mathematical models
Spindles
Twin-roll-cast AZ31B
Zener–Hollomon parameter
title Relating grain size to the Zener–Hollomon parameter for twin-roll-cast AZ31B alloy refined by friction stir processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A05%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relating%20grain%20size%20to%20the%20Zener%E2%80%93Hollomon%20parameter%20for%20twin-roll-cast%20AZ31B%20alloy%20refined%20by%20friction%20stir%20processing&rft.jtitle=Journal%20of%20materials%20processing%20technology&rft.au=Ammouri,%20A.H.&rft.date=2015-08&rft.volume=222&rft.spage=301&rft.epage=306&rft.pages=301-306&rft.issn=0924-0136&rft_id=info:doi/10.1016/j.jmatprotec.2015.02.037&rft_dat=%3Cproquest_cross%3E1701049638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701049638&rft_id=info:pmid/&rft_els_id=S0924013615000874&rfr_iscdi=true