Rotational evolution of the Crab pulsar in the wind braking model

The pulsar wind model is updated by considering the effect of particle density and pulsar death. It can describe both the short-term and long-term rotational evolution of pulsars consistently. It is applied to model the rotational evolution of the Crab pulsar. The pulsar is spun down by a combinatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2015-06, Vol.450 (2), p.1990-1998
Hauptverfasser: Kou, F. F., Tong, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1998
container_issue 2
container_start_page 1990
container_title Monthly notices of the Royal Astronomical Society
container_volume 450
creator Kou, F. F.
Tong, H.
description The pulsar wind model is updated by considering the effect of particle density and pulsar death. It can describe both the short-term and long-term rotational evolution of pulsars consistently. It is applied to model the rotational evolution of the Crab pulsar. The pulsar is spun down by a combination of magnetic dipole radiation and particle wind. The parameters of the Crab pulsar, including magnetic field, inclination angle, and particle density are calculated. The primary particle density in acceleration region is about 103 times the Goldreich–Julian charge density. The lower braking index between glitches is due to a larger outflowing particle density. This may be glitch induced magnetospheric activities in normal pulsars. Evolution of braking index and the Crab pulsar in $P-\dot{P}$ diagram are calculated. The Crab pulsar will evolve from magnetic dipole radiation dominated case towards particle wind-dominated case. Considering the effect of pulsar ‘death’, the Crab pulsar (and other normal pulsars) will not evolve to the cluster of magnetars but downwards to the death valley. Different acceleration models are also considered. Applications to other sources are also discussed, including pulsars with braking index measured, and the magnetar population.
doi_str_mv 10.1093/mnras/stv734
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701049520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stv734</oup_id><sourcerecordid>3699811161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-1ae25ef9d20cc62e03993c39411294ab3eea010955cd5a557e9695b8d67c147e3</originalsourceid><addsrcrecordid>eNqF0E1LxDAQBuAgCq6rN39AwIMerJvvNEdZ_IIFQfRc0naqXdumJu2K_97s1pMHPSVMnskwL0KnlFxRYvii7bwNizBsNBd7aEa5kgkzSu2jGSFcJqmm9BAdhbAmhAjO1AxdP7nBDrXrbINh45pxe8euwsMb4KW3Oe7HJliP625X-qy7EufevtfdK25dCc0xOqhsE-Dk55yjl9ub5-V9snq8e1her5KCGzMk1AKTUJmSkaJQDEis8vgkKGVG2JwDWBK3kLIopZVSg1FG5mmpdEGFBj5HF9O_vXcfI4Qha-tQQNPYDtwYMqpjuzCSkf-pMnEoN9JEevaLrt3oYxpblQquNUtVVJeTKrwLwUOV9b5urf_KKMm20We76LMp-sjPJ-7G_m_5DTyvhGI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1684377286</pqid></control><display><type>article</type><title>Rotational evolution of the Crab pulsar in the wind braking model</title><source>Oxford Journals Open Access Collection</source><creator>Kou, F. F. ; Tong, H.</creator><creatorcontrib>Kou, F. F. ; Tong, H.</creatorcontrib><description>The pulsar wind model is updated by considering the effect of particle density and pulsar death. It can describe both the short-term and long-term rotational evolution of pulsars consistently. It is applied to model the rotational evolution of the Crab pulsar. The pulsar is spun down by a combination of magnetic dipole radiation and particle wind. The parameters of the Crab pulsar, including magnetic field, inclination angle, and particle density are calculated. The primary particle density in acceleration region is about 103 times the Goldreich–Julian charge density. The lower braking index between glitches is due to a larger outflowing particle density. This may be glitch induced magnetospheric activities in normal pulsars. Evolution of braking index and the Crab pulsar in $P-\dot{P}$ diagram are calculated. The Crab pulsar will evolve from magnetic dipole radiation dominated case towards particle wind-dominated case. Considering the effect of pulsar ‘death’, the Crab pulsar (and other normal pulsars) will not evolve to the cluster of magnetars but downwards to the death valley. Different acceleration models are also considered. Applications to other sources are also discussed, including pulsars with braking index measured, and the magnetar population.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stv734</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Acceleration ; Astrophysics ; Braking ; Crabs ; Death ; Density ; Evolution ; Magnetic fields ; Mathematical models ; Pulsars ; Radiation ; Rotational ; Star &amp; galaxy formation</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2015-06, Vol.450 (2), p.1990-1998</ispartof><rights>2015 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2015</rights><rights>Copyright Oxford University Press, UK Jun 21, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-1ae25ef9d20cc62e03993c39411294ab3eea010955cd5a557e9695b8d67c147e3</citedby><cites>FETCH-LOGICAL-c399t-1ae25ef9d20cc62e03993c39411294ab3eea010955cd5a557e9695b8d67c147e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stv734$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Kou, F. F.</creatorcontrib><creatorcontrib>Tong, H.</creatorcontrib><title>Rotational evolution of the Crab pulsar in the wind braking model</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Mon. Not. R. Astron. Soc</addtitle><description>The pulsar wind model is updated by considering the effect of particle density and pulsar death. It can describe both the short-term and long-term rotational evolution of pulsars consistently. It is applied to model the rotational evolution of the Crab pulsar. The pulsar is spun down by a combination of magnetic dipole radiation and particle wind. The parameters of the Crab pulsar, including magnetic field, inclination angle, and particle density are calculated. The primary particle density in acceleration region is about 103 times the Goldreich–Julian charge density. The lower braking index between glitches is due to a larger outflowing particle density. This may be glitch induced magnetospheric activities in normal pulsars. Evolution of braking index and the Crab pulsar in $P-\dot{P}$ diagram are calculated. The Crab pulsar will evolve from magnetic dipole radiation dominated case towards particle wind-dominated case. Considering the effect of pulsar ‘death’, the Crab pulsar (and other normal pulsars) will not evolve to the cluster of magnetars but downwards to the death valley. Different acceleration models are also considered. Applications to other sources are also discussed, including pulsars with braking index measured, and the magnetar population.</description><subject>Acceleration</subject><subject>Astrophysics</subject><subject>Braking</subject><subject>Crabs</subject><subject>Death</subject><subject>Density</subject><subject>Evolution</subject><subject>Magnetic fields</subject><subject>Mathematical models</subject><subject>Pulsars</subject><subject>Radiation</subject><subject>Rotational</subject><subject>Star &amp; galaxy formation</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqF0E1LxDAQBuAgCq6rN39AwIMerJvvNEdZ_IIFQfRc0naqXdumJu2K_97s1pMHPSVMnskwL0KnlFxRYvii7bwNizBsNBd7aEa5kgkzSu2jGSFcJqmm9BAdhbAmhAjO1AxdP7nBDrXrbINh45pxe8euwsMb4KW3Oe7HJliP625X-qy7EufevtfdK25dCc0xOqhsE-Dk55yjl9ub5-V9snq8e1her5KCGzMk1AKTUJmSkaJQDEis8vgkKGVG2JwDWBK3kLIopZVSg1FG5mmpdEGFBj5HF9O_vXcfI4Qha-tQQNPYDtwYMqpjuzCSkf-pMnEoN9JEevaLrt3oYxpblQquNUtVVJeTKrwLwUOV9b5urf_KKMm20We76LMp-sjPJ-7G_m_5DTyvhGI</recordid><startdate>20150621</startdate><enddate>20150621</enddate><creator>Kou, F. F.</creator><creator>Tong, H.</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20150621</creationdate><title>Rotational evolution of the Crab pulsar in the wind braking model</title><author>Kou, F. F. ; Tong, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-1ae25ef9d20cc62e03993c39411294ab3eea010955cd5a557e9695b8d67c147e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acceleration</topic><topic>Astrophysics</topic><topic>Braking</topic><topic>Crabs</topic><topic>Death</topic><topic>Density</topic><topic>Evolution</topic><topic>Magnetic fields</topic><topic>Mathematical models</topic><topic>Pulsars</topic><topic>Radiation</topic><topic>Rotational</topic><topic>Star &amp; galaxy formation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kou, F. F.</creatorcontrib><creatorcontrib>Tong, H.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kou, F. F.</au><au>Tong, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rotational evolution of the Crab pulsar in the wind braking model</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Mon. Not. R. Astron. Soc</stitle><date>2015-06-21</date><risdate>2015</risdate><volume>450</volume><issue>2</issue><spage>1990</spage><epage>1998</epage><pages>1990-1998</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>The pulsar wind model is updated by considering the effect of particle density and pulsar death. It can describe both the short-term and long-term rotational evolution of pulsars consistently. It is applied to model the rotational evolution of the Crab pulsar. The pulsar is spun down by a combination of magnetic dipole radiation and particle wind. The parameters of the Crab pulsar, including magnetic field, inclination angle, and particle density are calculated. The primary particle density in acceleration region is about 103 times the Goldreich–Julian charge density. The lower braking index between glitches is due to a larger outflowing particle density. This may be glitch induced magnetospheric activities in normal pulsars. Evolution of braking index and the Crab pulsar in $P-\dot{P}$ diagram are calculated. The Crab pulsar will evolve from magnetic dipole radiation dominated case towards particle wind-dominated case. Considering the effect of pulsar ‘death’, the Crab pulsar (and other normal pulsars) will not evolve to the cluster of magnetars but downwards to the death valley. Different acceleration models are also considered. Applications to other sources are also discussed, including pulsars with braking index measured, and the magnetar population.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stv734</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2015-06, Vol.450 (2), p.1990-1998
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_miscellaneous_1701049520
source Oxford Journals Open Access Collection
subjects Acceleration
Astrophysics
Braking
Crabs
Death
Density
Evolution
Magnetic fields
Mathematical models
Pulsars
Radiation
Rotational
Star & galaxy formation
title Rotational evolution of the Crab pulsar in the wind braking model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A00%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rotational%20evolution%20of%20the%20Crab%20pulsar%20in%20the%20wind%20braking%20model&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Kou,%20F.%20F.&rft.date=2015-06-21&rft.volume=450&rft.issue=2&rft.spage=1990&rft.epage=1998&rft.pages=1990-1998&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stv734&rft_dat=%3Cproquest_TOX%3E3699811161%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1684377286&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stv734&rfr_iscdi=true