An Enhanced Implementation of Brain Tumor Detection Using Segmentation Based on Soft Computing
Image Segmentation is an important and challenging factor in the medical image segmentation. This paper describes segmentation method consisting of two phases. In the first phase, the MRI brain image is acquired from patients database, In that film artifact and noise are removed. After that Hierarch...
Gespeichert in:
Veröffentlicht in: | International Journal of Computer Theory and Engineering 2010-08, Vol.2 (4), p.586-590 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 590 |
---|---|
container_issue | 4 |
container_start_page | 586 |
container_title | International Journal of Computer Theory and Engineering |
container_volume | 2 |
creator | Logeswari, T Karnan, M |
description | Image Segmentation is an important and challenging factor in the medical image segmentation. This paper describes segmentation method consisting of two phases. In the first phase, the MRI brain image is acquired from patients database, In that film artifact and noise are removed. After that Hierarchical Self Organizing Map (HSOM) is applied for image segmentation. The HSOM is the extension of the conventional self organizing map used to classify the image row by row. In this lowest level of weight vector, a higher value of tumor pixels, computation speed is achieved by the HSOM with vector quantization. |
doi_str_mv | 10.7763/IJCTE.2010.V2.206 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701046167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701046167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2276-9cb519ed95e979e306ece5ef99324be8ea683a0d0e94c154784eaf2294af68883</originalsourceid><addsrcrecordid>eNqFkTtPwzAUhTOARFX6A9gssbCkxI_4MbahQFElhj5GLDe9KUGJXexk4N_jtkhILEzn3ns-XenoJMkNzsZCcHo_fylWszHJ4r4hUflFMsBC0VTG21UyCqHeRpMrgjkZJG8Ti2b23dgSdmjeHhpowXamq51FrkJTb2qLVn3rPHqADsqTsQ613aMl7H_ZqQnxQRyWrupQ4dpD30XoOrmsTBNg9KPDZP04WxXP6eL1aV5MFmlJiOCpKrc5VrBTOSihgGYcSsihUooStgUJhktqsl0GipU4Z0IyMBUhipmKSynpMLk7_z1499lD6HRbhxKaxlhwfdBYxMyMYy7-R3NMmeQS44je_kE_XO9tDKIxY1kkOc4ihc9U6V0IHip98HVr_JfGmT52ok-d6GMnekOicvoN2DWAIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1440151610</pqid></control><display><type>article</type><title>An Enhanced Implementation of Brain Tumor Detection Using Segmentation Based on Soft Computing</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Logeswari, T ; Karnan, M</creator><creatorcontrib>Logeswari, T ; Karnan, M</creatorcontrib><description>Image Segmentation is an important and challenging factor in the medical image segmentation. This paper describes segmentation method consisting of two phases. In the first phase, the MRI brain image is acquired from patients database, In that film artifact and noise are removed. After that Hierarchical Self Organizing Map (HSOM) is applied for image segmentation. The HSOM is the extension of the conventional self organizing map used to classify the image row by row. In this lowest level of weight vector, a higher value of tumor pixels, computation speed is achieved by the HSOM with vector quantization.</description><identifier>ISSN: 1793-8201</identifier><identifier>DOI: 10.7763/IJCTE.2010.V2.206</identifier><language>eng</language><publisher>Singapore: IACSIT Press</publisher><subject>Brain ; Image segmentation ; Organizing ; Patients ; Segmentation ; Tumors ; Vector quantization</subject><ispartof>International Journal of Computer Theory and Engineering, 2010-08, Vol.2 (4), p.586-590</ispartof><rights>Copyright IACSIT Press Aug 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2276-9cb519ed95e979e306ece5ef99324be8ea683a0d0e94c154784eaf2294af68883</citedby><cites>FETCH-LOGICAL-c2276-9cb519ed95e979e306ece5ef99324be8ea683a0d0e94c154784eaf2294af68883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Logeswari, T</creatorcontrib><creatorcontrib>Karnan, M</creatorcontrib><title>An Enhanced Implementation of Brain Tumor Detection Using Segmentation Based on Soft Computing</title><title>International Journal of Computer Theory and Engineering</title><description>Image Segmentation is an important and challenging factor in the medical image segmentation. This paper describes segmentation method consisting of two phases. In the first phase, the MRI brain image is acquired from patients database, In that film artifact and noise are removed. After that Hierarchical Self Organizing Map (HSOM) is applied for image segmentation. The HSOM is the extension of the conventional self organizing map used to classify the image row by row. In this lowest level of weight vector, a higher value of tumor pixels, computation speed is achieved by the HSOM with vector quantization.</description><subject>Brain</subject><subject>Image segmentation</subject><subject>Organizing</subject><subject>Patients</subject><subject>Segmentation</subject><subject>Tumors</subject><subject>Vector quantization</subject><issn>1793-8201</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkTtPwzAUhTOARFX6A9gssbCkxI_4MbahQFElhj5GLDe9KUGJXexk4N_jtkhILEzn3ns-XenoJMkNzsZCcHo_fylWszHJ4r4hUflFMsBC0VTG21UyCqHeRpMrgjkZJG8Ti2b23dgSdmjeHhpowXamq51FrkJTb2qLVn3rPHqADsqTsQ613aMl7H_ZqQnxQRyWrupQ4dpD30XoOrmsTBNg9KPDZP04WxXP6eL1aV5MFmlJiOCpKrc5VrBTOSihgGYcSsihUooStgUJhktqsl0GipU4Z0IyMBUhipmKSynpMLk7_z1499lD6HRbhxKaxlhwfdBYxMyMYy7-R3NMmeQS44je_kE_XO9tDKIxY1kkOc4ihc9U6V0IHip98HVr_JfGmT52ok-d6GMnekOicvoN2DWAIA</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Logeswari, T</creator><creator>Karnan, M</creator><general>IACSIT Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100801</creationdate><title>An Enhanced Implementation of Brain Tumor Detection Using Segmentation Based on Soft Computing</title><author>Logeswari, T ; Karnan, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2276-9cb519ed95e979e306ece5ef99324be8ea683a0d0e94c154784eaf2294af68883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Brain</topic><topic>Image segmentation</topic><topic>Organizing</topic><topic>Patients</topic><topic>Segmentation</topic><topic>Tumors</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Logeswari, T</creatorcontrib><creatorcontrib>Karnan, M</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International Journal of Computer Theory and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Logeswari, T</au><au>Karnan, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Enhanced Implementation of Brain Tumor Detection Using Segmentation Based on Soft Computing</atitle><jtitle>International Journal of Computer Theory and Engineering</jtitle><date>2010-08-01</date><risdate>2010</risdate><volume>2</volume><issue>4</issue><spage>586</spage><epage>590</epage><pages>586-590</pages><issn>1793-8201</issn><abstract>Image Segmentation is an important and challenging factor in the medical image segmentation. This paper describes segmentation method consisting of two phases. In the first phase, the MRI brain image is acquired from patients database, In that film artifact and noise are removed. After that Hierarchical Self Organizing Map (HSOM) is applied for image segmentation. The HSOM is the extension of the conventional self organizing map used to classify the image row by row. In this lowest level of weight vector, a higher value of tumor pixels, computation speed is achieved by the HSOM with vector quantization.</abstract><cop>Singapore</cop><pub>IACSIT Press</pub><doi>10.7763/IJCTE.2010.V2.206</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1793-8201 |
ispartof | International Journal of Computer Theory and Engineering, 2010-08, Vol.2 (4), p.586-590 |
issn | 1793-8201 |
language | eng |
recordid | cdi_proquest_miscellaneous_1701046167 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Brain Image segmentation Organizing Patients Segmentation Tumors Vector quantization |
title | An Enhanced Implementation of Brain Tumor Detection Using Segmentation Based on Soft Computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A02%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Enhanced%20Implementation%20of%20Brain%20Tumor%20Detection%20Using%20Segmentation%20Based%20on%20Soft%20Computing&rft.jtitle=International%20Journal%20of%20Computer%20Theory%20and%20Engineering&rft.au=Logeswari,%20T&rft.date=2010-08-01&rft.volume=2&rft.issue=4&rft.spage=586&rft.epage=590&rft.pages=586-590&rft.issn=1793-8201&rft_id=info:doi/10.7763/IJCTE.2010.V2.206&rft_dat=%3Cproquest_cross%3E1701046167%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1440151610&rft_id=info:pmid/&rfr_iscdi=true |