An Enhanced Implementation of Brain Tumor Detection Using Segmentation Based on Soft Computing

Image Segmentation is an important and challenging factor in the medical image segmentation. This paper describes segmentation method consisting of two phases. In the first phase, the MRI brain image is acquired from patients database, In that film artifact and noise are removed. After that Hierarch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Computer Theory and Engineering 2010-08, Vol.2 (4), p.586-590
Hauptverfasser: Logeswari, T, Karnan, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 590
container_issue 4
container_start_page 586
container_title International Journal of Computer Theory and Engineering
container_volume 2
creator Logeswari, T
Karnan, M
description Image Segmentation is an important and challenging factor in the medical image segmentation. This paper describes segmentation method consisting of two phases. In the first phase, the MRI brain image is acquired from patients database, In that film artifact and noise are removed. After that Hierarchical Self Organizing Map (HSOM) is applied for image segmentation. The HSOM is the extension of the conventional self organizing map used to classify the image row by row. In this lowest level of weight vector, a higher value of tumor pixels, computation speed is achieved by the HSOM with vector quantization.
doi_str_mv 10.7763/IJCTE.2010.V2.206
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701046167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701046167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2276-9cb519ed95e979e306ece5ef99324be8ea683a0d0e94c154784eaf2294af68883</originalsourceid><addsrcrecordid>eNqFkTtPwzAUhTOARFX6A9gssbCkxI_4MbahQFElhj5GLDe9KUGJXexk4N_jtkhILEzn3ns-XenoJMkNzsZCcHo_fylWszHJ4r4hUflFMsBC0VTG21UyCqHeRpMrgjkZJG8Ti2b23dgSdmjeHhpowXamq51FrkJTb2qLVn3rPHqADsqTsQ613aMl7H_ZqQnxQRyWrupQ4dpD30XoOrmsTBNg9KPDZP04WxXP6eL1aV5MFmlJiOCpKrc5VrBTOSihgGYcSsihUooStgUJhktqsl0GipU4Z0IyMBUhipmKSynpMLk7_z1499lD6HRbhxKaxlhwfdBYxMyMYy7-R3NMmeQS44je_kE_XO9tDKIxY1kkOc4ihc9U6V0IHip98HVr_JfGmT52ok-d6GMnekOicvoN2DWAIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1440151610</pqid></control><display><type>article</type><title>An Enhanced Implementation of Brain Tumor Detection Using Segmentation Based on Soft Computing</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Logeswari, T ; Karnan, M</creator><creatorcontrib>Logeswari, T ; Karnan, M</creatorcontrib><description>Image Segmentation is an important and challenging factor in the medical image segmentation. This paper describes segmentation method consisting of two phases. In the first phase, the MRI brain image is acquired from patients database, In that film artifact and noise are removed. After that Hierarchical Self Organizing Map (HSOM) is applied for image segmentation. The HSOM is the extension of the conventional self organizing map used to classify the image row by row. In this lowest level of weight vector, a higher value of tumor pixels, computation speed is achieved by the HSOM with vector quantization.</description><identifier>ISSN: 1793-8201</identifier><identifier>DOI: 10.7763/IJCTE.2010.V2.206</identifier><language>eng</language><publisher>Singapore: IACSIT Press</publisher><subject>Brain ; Image segmentation ; Organizing ; Patients ; Segmentation ; Tumors ; Vector quantization</subject><ispartof>International Journal of Computer Theory and Engineering, 2010-08, Vol.2 (4), p.586-590</ispartof><rights>Copyright IACSIT Press Aug 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2276-9cb519ed95e979e306ece5ef99324be8ea683a0d0e94c154784eaf2294af68883</citedby><cites>FETCH-LOGICAL-c2276-9cb519ed95e979e306ece5ef99324be8ea683a0d0e94c154784eaf2294af68883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Logeswari, T</creatorcontrib><creatorcontrib>Karnan, M</creatorcontrib><title>An Enhanced Implementation of Brain Tumor Detection Using Segmentation Based on Soft Computing</title><title>International Journal of Computer Theory and Engineering</title><description>Image Segmentation is an important and challenging factor in the medical image segmentation. This paper describes segmentation method consisting of two phases. In the first phase, the MRI brain image is acquired from patients database, In that film artifact and noise are removed. After that Hierarchical Self Organizing Map (HSOM) is applied for image segmentation. The HSOM is the extension of the conventional self organizing map used to classify the image row by row. In this lowest level of weight vector, a higher value of tumor pixels, computation speed is achieved by the HSOM with vector quantization.</description><subject>Brain</subject><subject>Image segmentation</subject><subject>Organizing</subject><subject>Patients</subject><subject>Segmentation</subject><subject>Tumors</subject><subject>Vector quantization</subject><issn>1793-8201</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkTtPwzAUhTOARFX6A9gssbCkxI_4MbahQFElhj5GLDe9KUGJXexk4N_jtkhILEzn3ns-XenoJMkNzsZCcHo_fylWszHJ4r4hUflFMsBC0VTG21UyCqHeRpMrgjkZJG8Ti2b23dgSdmjeHhpowXamq51FrkJTb2qLVn3rPHqADsqTsQ613aMl7H_ZqQnxQRyWrupQ4dpD30XoOrmsTBNg9KPDZP04WxXP6eL1aV5MFmlJiOCpKrc5VrBTOSihgGYcSsihUooStgUJhktqsl0GipU4Z0IyMBUhipmKSynpMLk7_z1499lD6HRbhxKaxlhwfdBYxMyMYy7-R3NMmeQS44je_kE_XO9tDKIxY1kkOc4ihc9U6V0IHip98HVr_JfGmT52ok-d6GMnekOicvoN2DWAIA</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Logeswari, T</creator><creator>Karnan, M</creator><general>IACSIT Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100801</creationdate><title>An Enhanced Implementation of Brain Tumor Detection Using Segmentation Based on Soft Computing</title><author>Logeswari, T ; Karnan, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2276-9cb519ed95e979e306ece5ef99324be8ea683a0d0e94c154784eaf2294af68883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Brain</topic><topic>Image segmentation</topic><topic>Organizing</topic><topic>Patients</topic><topic>Segmentation</topic><topic>Tumors</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Logeswari, T</creatorcontrib><creatorcontrib>Karnan, M</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International Journal of Computer Theory and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Logeswari, T</au><au>Karnan, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Enhanced Implementation of Brain Tumor Detection Using Segmentation Based on Soft Computing</atitle><jtitle>International Journal of Computer Theory and Engineering</jtitle><date>2010-08-01</date><risdate>2010</risdate><volume>2</volume><issue>4</issue><spage>586</spage><epage>590</epage><pages>586-590</pages><issn>1793-8201</issn><abstract>Image Segmentation is an important and challenging factor in the medical image segmentation. This paper describes segmentation method consisting of two phases. In the first phase, the MRI brain image is acquired from patients database, In that film artifact and noise are removed. After that Hierarchical Self Organizing Map (HSOM) is applied for image segmentation. The HSOM is the extension of the conventional self organizing map used to classify the image row by row. In this lowest level of weight vector, a higher value of tumor pixels, computation speed is achieved by the HSOM with vector quantization.</abstract><cop>Singapore</cop><pub>IACSIT Press</pub><doi>10.7763/IJCTE.2010.V2.206</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1793-8201
ispartof International Journal of Computer Theory and Engineering, 2010-08, Vol.2 (4), p.586-590
issn 1793-8201
language eng
recordid cdi_proquest_miscellaneous_1701046167
source EZB-FREE-00999 freely available EZB journals
subjects Brain
Image segmentation
Organizing
Patients
Segmentation
Tumors
Vector quantization
title An Enhanced Implementation of Brain Tumor Detection Using Segmentation Based on Soft Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A02%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Enhanced%20Implementation%20of%20Brain%20Tumor%20Detection%20Using%20Segmentation%20Based%20on%20Soft%20Computing&rft.jtitle=International%20Journal%20of%20Computer%20Theory%20and%20Engineering&rft.au=Logeswari,%20T&rft.date=2010-08-01&rft.volume=2&rft.issue=4&rft.spage=586&rft.epage=590&rft.pages=586-590&rft.issn=1793-8201&rft_id=info:doi/10.7763/IJCTE.2010.V2.206&rft_dat=%3Cproquest_cross%3E1701046167%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1440151610&rft_id=info:pmid/&rfr_iscdi=true