Effect of the Catalyst Bed Configuration on the Partial Oxidation of Liquid Hydrocarbons

Rh-substituted pyrochlores have been shown to be excellent diesel reforming catalysts. However, it is desirable to reduce the amount of this expensive material while maintaining an acceptable level of hydrogen production. This study demonstrates that a segmented catalyst bed approach can be used to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2013-08, Vol.27 (8), p.4363-4370
Hauptverfasser: Smith, Mark W, Shekhawat, Dushyant, Berry, David A, Haynes, Daniel J, Floyd, Donald L, Spivey, James J, Zondlo, John W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4370
container_issue 8
container_start_page 4363
container_title Energy & fuels
container_volume 27
creator Smith, Mark W
Shekhawat, Dushyant
Berry, David A
Haynes, Daniel J
Floyd, Donald L
Spivey, James J
Zondlo, John W
description Rh-substituted pyrochlores have been shown to be excellent diesel reforming catalysts. However, it is desirable to reduce the amount of this expensive material while maintaining an acceptable level of hydrogen production. This study demonstrates that a segmented catalyst bed approach can be used to achieve this objective. Two strategies were examined: (1) promotion of the indirect reforming mechanism with a combustion catalyst in the reactor inlet, followed by a reforming catalyst, and (2) placement of catalysts in regions of the reactor that have conditions in which they are less likely to deactivate. The first approach demonstrated that a Ni-substituted barium hexaaluminate catalyst can be used in the reactor inlet to promote combustion with a Rh-substituted pyrochlore in the reactor outlet, but the combustion catalyst should fill less than 50% of the reactor. The second approach showed a benefit in the use of a sulfur-tolerant noble metal catalyst in the reactor outlet and that a significant portion of the carbon formed on the Ni-substituted pyrochlore is located in the last 25% of the catalyst bed.
doi_str_mv 10.1021/ef3021975
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701044654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701044654</sourcerecordid><originalsourceid>FETCH-LOGICAL-a292t-bb2050947956d6aa5ca6bcfcd3039626cff819456fa1b5c9e230692e9bf358ec3</originalsourceid><addsrcrecordid>eNpt0EFLwzAUB_AgCs7pwW-Qi6CH6kvSpM1Ry3TCYB4UvJU0TTSja7YkBfft7djwJDz4H96PB--P0DWBewKUPBjLxpAFP0ETwilkHKg8RRMoyyIDQfNzdBHjCgAEK_kEfc6sNTphb3H6NrhSSXW7mPCTaXHle-u-hqCS8z0eZy_eVEhOdXj549rjwuKF2w6uxfNdG7xWofF9vERnVnXRXB1zij6eZ-_VPFssX16rx0WmqKQpaxoKHGReSC5aoRTXSjTa6pYBk4IKbW1JZM6FVaThWhrKQEhqZGMZL41mU3R7uLsJfjuYmOq1i9p0neqNH2JNCiCQ54LnI707UB18jMHYehPcWoVdTaDet1f_tTfam4NVOtYrP4R-fOIf9wt3AG1D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701044654</pqid></control><display><type>article</type><title>Effect of the Catalyst Bed Configuration on the Partial Oxidation of Liquid Hydrocarbons</title><source>ACS Publications</source><creator>Smith, Mark W ; Shekhawat, Dushyant ; Berry, David A ; Haynes, Daniel J ; Floyd, Donald L ; Spivey, James J ; Zondlo, John W</creator><creatorcontrib>Smith, Mark W ; Shekhawat, Dushyant ; Berry, David A ; Haynes, Daniel J ; Floyd, Donald L ; Spivey, James J ; Zondlo, John W</creatorcontrib><description>Rh-substituted pyrochlores have been shown to be excellent diesel reforming catalysts. However, it is desirable to reduce the amount of this expensive material while maintaining an acceptable level of hydrogen production. This study demonstrates that a segmented catalyst bed approach can be used to achieve this objective. Two strategies were examined: (1) promotion of the indirect reforming mechanism with a combustion catalyst in the reactor inlet, followed by a reforming catalyst, and (2) placement of catalysts in regions of the reactor that have conditions in which they are less likely to deactivate. The first approach demonstrated that a Ni-substituted barium hexaaluminate catalyst can be used in the reactor inlet to promote combustion with a Rh-substituted pyrochlore in the reactor outlet, but the combustion catalyst should fill less than 50% of the reactor. The second approach showed a benefit in the use of a sulfur-tolerant noble metal catalyst in the reactor outlet and that a significant portion of the carbon formed on the Ni-substituted pyrochlore is located in the last 25% of the catalyst bed.</description><identifier>ISSN: 0887-0624</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/ef3021975</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Catalysts ; Combustion ; Inlets ; Nickel ; Outlets ; Pyrochlores ; Reactors ; Reforming</subject><ispartof>Energy &amp; fuels, 2013-08, Vol.27 (8), p.4363-4370</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a292t-bb2050947956d6aa5ca6bcfcd3039626cff819456fa1b5c9e230692e9bf358ec3</citedby><cites>FETCH-LOGICAL-a292t-bb2050947956d6aa5ca6bcfcd3039626cff819456fa1b5c9e230692e9bf358ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ef3021975$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ef3021975$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids></links><search><creatorcontrib>Smith, Mark W</creatorcontrib><creatorcontrib>Shekhawat, Dushyant</creatorcontrib><creatorcontrib>Berry, David A</creatorcontrib><creatorcontrib>Haynes, Daniel J</creatorcontrib><creatorcontrib>Floyd, Donald L</creatorcontrib><creatorcontrib>Spivey, James J</creatorcontrib><creatorcontrib>Zondlo, John W</creatorcontrib><title>Effect of the Catalyst Bed Configuration on the Partial Oxidation of Liquid Hydrocarbons</title><title>Energy &amp; fuels</title><addtitle>Energy Fuels</addtitle><description>Rh-substituted pyrochlores have been shown to be excellent diesel reforming catalysts. However, it is desirable to reduce the amount of this expensive material while maintaining an acceptable level of hydrogen production. This study demonstrates that a segmented catalyst bed approach can be used to achieve this objective. Two strategies were examined: (1) promotion of the indirect reforming mechanism with a combustion catalyst in the reactor inlet, followed by a reforming catalyst, and (2) placement of catalysts in regions of the reactor that have conditions in which they are less likely to deactivate. The first approach demonstrated that a Ni-substituted barium hexaaluminate catalyst can be used in the reactor inlet to promote combustion with a Rh-substituted pyrochlore in the reactor outlet, but the combustion catalyst should fill less than 50% of the reactor. The second approach showed a benefit in the use of a sulfur-tolerant noble metal catalyst in the reactor outlet and that a significant portion of the carbon formed on the Ni-substituted pyrochlore is located in the last 25% of the catalyst bed.</description><subject>Catalysts</subject><subject>Combustion</subject><subject>Inlets</subject><subject>Nickel</subject><subject>Outlets</subject><subject>Pyrochlores</subject><subject>Reactors</subject><subject>Reforming</subject><issn>0887-0624</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpt0EFLwzAUB_AgCs7pwW-Qi6CH6kvSpM1Ry3TCYB4UvJU0TTSja7YkBfft7djwJDz4H96PB--P0DWBewKUPBjLxpAFP0ETwilkHKg8RRMoyyIDQfNzdBHjCgAEK_kEfc6sNTphb3H6NrhSSXW7mPCTaXHle-u-hqCS8z0eZy_eVEhOdXj549rjwuKF2w6uxfNdG7xWofF9vERnVnXRXB1zij6eZ-_VPFssX16rx0WmqKQpaxoKHGReSC5aoRTXSjTa6pYBk4IKbW1JZM6FVaThWhrKQEhqZGMZL41mU3R7uLsJfjuYmOq1i9p0neqNH2JNCiCQ54LnI707UB18jMHYehPcWoVdTaDet1f_tTfam4NVOtYrP4R-fOIf9wt3AG1D</recordid><startdate>20130815</startdate><enddate>20130815</enddate><creator>Smith, Mark W</creator><creator>Shekhawat, Dushyant</creator><creator>Berry, David A</creator><creator>Haynes, Daniel J</creator><creator>Floyd, Donald L</creator><creator>Spivey, James J</creator><creator>Zondlo, John W</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130815</creationdate><title>Effect of the Catalyst Bed Configuration on the Partial Oxidation of Liquid Hydrocarbons</title><author>Smith, Mark W ; Shekhawat, Dushyant ; Berry, David A ; Haynes, Daniel J ; Floyd, Donald L ; Spivey, James J ; Zondlo, John W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a292t-bb2050947956d6aa5ca6bcfcd3039626cff819456fa1b5c9e230692e9bf358ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Catalysts</topic><topic>Combustion</topic><topic>Inlets</topic><topic>Nickel</topic><topic>Outlets</topic><topic>Pyrochlores</topic><topic>Reactors</topic><topic>Reforming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Mark W</creatorcontrib><creatorcontrib>Shekhawat, Dushyant</creatorcontrib><creatorcontrib>Berry, David A</creatorcontrib><creatorcontrib>Haynes, Daniel J</creatorcontrib><creatorcontrib>Floyd, Donald L</creatorcontrib><creatorcontrib>Spivey, James J</creatorcontrib><creatorcontrib>Zondlo, John W</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Mark W</au><au>Shekhawat, Dushyant</au><au>Berry, David A</au><au>Haynes, Daniel J</au><au>Floyd, Donald L</au><au>Spivey, James J</au><au>Zondlo, John W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of the Catalyst Bed Configuration on the Partial Oxidation of Liquid Hydrocarbons</atitle><jtitle>Energy &amp; fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2013-08-15</date><risdate>2013</risdate><volume>27</volume><issue>8</issue><spage>4363</spage><epage>4370</epage><pages>4363-4370</pages><issn>0887-0624</issn><eissn>1520-5029</eissn><abstract>Rh-substituted pyrochlores have been shown to be excellent diesel reforming catalysts. However, it is desirable to reduce the amount of this expensive material while maintaining an acceptable level of hydrogen production. This study demonstrates that a segmented catalyst bed approach can be used to achieve this objective. Two strategies were examined: (1) promotion of the indirect reforming mechanism with a combustion catalyst in the reactor inlet, followed by a reforming catalyst, and (2) placement of catalysts in regions of the reactor that have conditions in which they are less likely to deactivate. The first approach demonstrated that a Ni-substituted barium hexaaluminate catalyst can be used in the reactor inlet to promote combustion with a Rh-substituted pyrochlore in the reactor outlet, but the combustion catalyst should fill less than 50% of the reactor. The second approach showed a benefit in the use of a sulfur-tolerant noble metal catalyst in the reactor outlet and that a significant portion of the carbon formed on the Ni-substituted pyrochlore is located in the last 25% of the catalyst bed.</abstract><pub>American Chemical Society</pub><doi>10.1021/ef3021975</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0887-0624
ispartof Energy & fuels, 2013-08, Vol.27 (8), p.4363-4370
issn 0887-0624
1520-5029
language eng
recordid cdi_proquest_miscellaneous_1701044654
source ACS Publications
subjects Catalysts
Combustion
Inlets
Nickel
Outlets
Pyrochlores
Reactors
Reforming
title Effect of the Catalyst Bed Configuration on the Partial Oxidation of Liquid Hydrocarbons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T14%3A23%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20the%20Catalyst%20Bed%20Configuration%20on%20the%20Partial%20Oxidation%20of%20Liquid%20Hydrocarbons&rft.jtitle=Energy%20&%20fuels&rft.au=Smith,%20Mark%20W&rft.date=2013-08-15&rft.volume=27&rft.issue=8&rft.spage=4363&rft.epage=4370&rft.pages=4363-4370&rft.issn=0887-0624&rft.eissn=1520-5029&rft_id=info:doi/10.1021/ef3021975&rft_dat=%3Cproquest_cross%3E1701044654%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701044654&rft_id=info:pmid/&rfr_iscdi=true