Analysis of a finite-buffer bulk-service queue under Markovian arrival process with batch-size-dependent service

We consider a finite capacity single server queue in which the customers arrive according to a Markovian arrival process. The customers are served in batches following a ‘general bulk service rule’. The service times, which depend on the size of the batch, are generally distributed. We obtain, in st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & operations research 2015-08, Vol.60, p.138-149
Hauptverfasser: Banerjee, A., Gupta, U.C., Chakravarthy, S.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 149
container_issue
container_start_page 138
container_title Computers & operations research
container_volume 60
creator Banerjee, A.
Gupta, U.C.
Chakravarthy, S.R.
description We consider a finite capacity single server queue in which the customers arrive according to a Markovian arrival process. The customers are served in batches following a ‘general bulk service rule’. The service times, which depend on the size of the batch, are generally distributed. We obtain, in steady-state, the joint distribution of the random variables of interest at various epochs. Efficient computational procedures in the case of phase type services are presented. An illustrative numerical example to bring out the qualitative nature of the model is presented.
doi_str_mv 10.1016/j.cor.2015.02.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701042029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030505481500043X</els_id><sourcerecordid>3650871741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-b016a1ddf9662d7cd1f6b5008f4370ff3fce7ecd9e284b7d3082e63c3b4224383</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMouH78AG8BL15SJ0nbdPEk4hcoXhS8hTSZsFlruybtiv56s6wnD85lDvO8w7zzEnLCoeDA6_NlYYdYCOBVAaIALnbIjDdKMlVXr7tkBhIqBlXZ7JODlJaQSwk-I6vL3nRfKSQ6eGqoD30YkbWT9xhpO3VvLGFcB4v0Y8IJ6dS7PHg08W1YB9NTE2NYm46u4mAxJfoZxgVtzWgXLIVvZA5XmCX9SH_3HJE9b7qEx7_9kLzcXD9f3bGHp9v7q8sHZmUzH1mbTRnunJ_XtXDKOu7rtgJofCkVeC-9RYXWzVE0ZauchEZgLa1sSyFK2chDcrbdmy_Lp6dRv4dksetMj8OUNFfAoRQg5hk9_YMuhynmv2Sqzl-qGwUiU3xL2TikFNHrVQzvJn5pDnqTgV7qnIHeZKBB6JxB1lxsNZidrgNGnWzA3qILEe2o3RD-Uf8AVE-QPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1672168702</pqid></control><display><type>article</type><title>Analysis of a finite-buffer bulk-service queue under Markovian arrival process with batch-size-dependent service</title><source>Elsevier ScienceDirect Journals</source><creator>Banerjee, A. ; Gupta, U.C. ; Chakravarthy, S.R.</creator><creatorcontrib>Banerjee, A. ; Gupta, U.C. ; Chakravarthy, S.R.</creatorcontrib><description>We consider a finite capacity single server queue in which the customers arrive according to a Markovian arrival process. The customers are served in batches following a ‘general bulk service rule’. The service times, which depend on the size of the batch, are generally distributed. We obtain, in steady-state, the joint distribution of the random variables of interest at various epochs. Efficient computational procedures in the case of phase type services are presented. An illustrative numerical example to bring out the qualitative nature of the model is presented.</description><identifier>ISSN: 0305-0548</identifier><identifier>EISSN: 1873-765X</identifier><identifier>EISSN: 0305-0548</identifier><identifier>DOI: 10.1016/j.cor.2015.02.012</identifier><identifier>CODEN: CMORAP</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Algorithmic probability ; Arrivals ; Computer simulation ; Customer services ; Customers ; Finite capacity ; General bulk service rule ; Markov analysis ; Markov processes ; Markovian arrival process ; Mathematical models ; Operations research ; Phase type distribution ; Queue ; Queues ; Queuing theory ; Random variables ; Servers ; Studies</subject><ispartof>Computers &amp; operations research, 2015-08, Vol.60, p.138-149</ispartof><rights>2015 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Aug 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-b016a1ddf9662d7cd1f6b5008f4370ff3fce7ecd9e284b7d3082e63c3b4224383</citedby><cites>FETCH-LOGICAL-c389t-b016a1ddf9662d7cd1f6b5008f4370ff3fce7ecd9e284b7d3082e63c3b4224383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S030505481500043X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Banerjee, A.</creatorcontrib><creatorcontrib>Gupta, U.C.</creatorcontrib><creatorcontrib>Chakravarthy, S.R.</creatorcontrib><title>Analysis of a finite-buffer bulk-service queue under Markovian arrival process with batch-size-dependent service</title><title>Computers &amp; operations research</title><description>We consider a finite capacity single server queue in which the customers arrive according to a Markovian arrival process. The customers are served in batches following a ‘general bulk service rule’. The service times, which depend on the size of the batch, are generally distributed. We obtain, in steady-state, the joint distribution of the random variables of interest at various epochs. Efficient computational procedures in the case of phase type services are presented. An illustrative numerical example to bring out the qualitative nature of the model is presented.</description><subject>Algorithmic probability</subject><subject>Arrivals</subject><subject>Computer simulation</subject><subject>Customer services</subject><subject>Customers</subject><subject>Finite capacity</subject><subject>General bulk service rule</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>Markovian arrival process</subject><subject>Mathematical models</subject><subject>Operations research</subject><subject>Phase type distribution</subject><subject>Queue</subject><subject>Queues</subject><subject>Queuing theory</subject><subject>Random variables</subject><subject>Servers</subject><subject>Studies</subject><issn>0305-0548</issn><issn>1873-765X</issn><issn>0305-0548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LxDAQhoMouH78AG8BL15SJ0nbdPEk4hcoXhS8hTSZsFlruybtiv56s6wnD85lDvO8w7zzEnLCoeDA6_NlYYdYCOBVAaIALnbIjDdKMlVXr7tkBhIqBlXZ7JODlJaQSwk-I6vL3nRfKSQ6eGqoD30YkbWT9xhpO3VvLGFcB4v0Y8IJ6dS7PHg08W1YB9NTE2NYm46u4mAxJfoZxgVtzWgXLIVvZA5XmCX9SH_3HJE9b7qEx7_9kLzcXD9f3bGHp9v7q8sHZmUzH1mbTRnunJ_XtXDKOu7rtgJofCkVeC-9RYXWzVE0ZauchEZgLa1sSyFK2chDcrbdmy_Lp6dRv4dksetMj8OUNFfAoRQg5hk9_YMuhynmv2Sqzl-qGwUiU3xL2TikFNHrVQzvJn5pDnqTgV7qnIHeZKBB6JxB1lxsNZidrgNGnWzA3qILEe2o3RD-Uf8AVE-QPQ</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Banerjee, A.</creator><creator>Gupta, U.C.</creator><creator>Chakravarthy, S.R.</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150801</creationdate><title>Analysis of a finite-buffer bulk-service queue under Markovian arrival process with batch-size-dependent service</title><author>Banerjee, A. ; Gupta, U.C. ; Chakravarthy, S.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-b016a1ddf9662d7cd1f6b5008f4370ff3fce7ecd9e284b7d3082e63c3b4224383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithmic probability</topic><topic>Arrivals</topic><topic>Computer simulation</topic><topic>Customer services</topic><topic>Customers</topic><topic>Finite capacity</topic><topic>General bulk service rule</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>Markovian arrival process</topic><topic>Mathematical models</topic><topic>Operations research</topic><topic>Phase type distribution</topic><topic>Queue</topic><topic>Queues</topic><topic>Queuing theory</topic><topic>Random variables</topic><topic>Servers</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banerjee, A.</creatorcontrib><creatorcontrib>Gupta, U.C.</creatorcontrib><creatorcontrib>Chakravarthy, S.R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banerjee, A.</au><au>Gupta, U.C.</au><au>Chakravarthy, S.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of a finite-buffer bulk-service queue under Markovian arrival process with batch-size-dependent service</atitle><jtitle>Computers &amp; operations research</jtitle><date>2015-08-01</date><risdate>2015</risdate><volume>60</volume><spage>138</spage><epage>149</epage><pages>138-149</pages><issn>0305-0548</issn><eissn>1873-765X</eissn><eissn>0305-0548</eissn><coden>CMORAP</coden><abstract>We consider a finite capacity single server queue in which the customers arrive according to a Markovian arrival process. The customers are served in batches following a ‘general bulk service rule’. The service times, which depend on the size of the batch, are generally distributed. We obtain, in steady-state, the joint distribution of the random variables of interest at various epochs. Efficient computational procedures in the case of phase type services are presented. An illustrative numerical example to bring out the qualitative nature of the model is presented.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cor.2015.02.012</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0305-0548
ispartof Computers & operations research, 2015-08, Vol.60, p.138-149
issn 0305-0548
1873-765X
0305-0548
language eng
recordid cdi_proquest_miscellaneous_1701042029
source Elsevier ScienceDirect Journals
subjects Algorithmic probability
Arrivals
Computer simulation
Customer services
Customers
Finite capacity
General bulk service rule
Markov analysis
Markov processes
Markovian arrival process
Mathematical models
Operations research
Phase type distribution
Queue
Queues
Queuing theory
Random variables
Servers
Studies
title Analysis of a finite-buffer bulk-service queue under Markovian arrival process with batch-size-dependent service
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A02%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20a%20finite-buffer%20bulk-service%20queue%20under%20Markovian%20arrival%20process%20with%20batch-size-dependent%20service&rft.jtitle=Computers%20&%20operations%20research&rft.au=Banerjee,%20A.&rft.date=2015-08-01&rft.volume=60&rft.spage=138&rft.epage=149&rft.pages=138-149&rft.issn=0305-0548&rft.eissn=1873-765X&rft.coden=CMORAP&rft_id=info:doi/10.1016/j.cor.2015.02.012&rft_dat=%3Cproquest_cross%3E3650871741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1672168702&rft_id=info:pmid/&rft_els_id=S030505481500043X&rfr_iscdi=true