Analysis of a finite-buffer bulk-service queue under Markovian arrival process with batch-size-dependent service
We consider a finite capacity single server queue in which the customers arrive according to a Markovian arrival process. The customers are served in batches following a ‘general bulk service rule’. The service times, which depend on the size of the batch, are generally distributed. We obtain, in st...
Gespeichert in:
Veröffentlicht in: | Computers & operations research 2015-08, Vol.60, p.138-149 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 149 |
---|---|
container_issue | |
container_start_page | 138 |
container_title | Computers & operations research |
container_volume | 60 |
creator | Banerjee, A. Gupta, U.C. Chakravarthy, S.R. |
description | We consider a finite capacity single server queue in which the customers arrive according to a Markovian arrival process. The customers are served in batches following a ‘general bulk service rule’. The service times, which depend on the size of the batch, are generally distributed. We obtain, in steady-state, the joint distribution of the random variables of interest at various epochs. Efficient computational procedures in the case of phase type services are presented. An illustrative numerical example to bring out the qualitative nature of the model is presented. |
doi_str_mv | 10.1016/j.cor.2015.02.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701042029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030505481500043X</els_id><sourcerecordid>3650871741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-b016a1ddf9662d7cd1f6b5008f4370ff3fce7ecd9e284b7d3082e63c3b4224383</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMouH78AG8BL15SJ0nbdPEk4hcoXhS8hTSZsFlruybtiv56s6wnD85lDvO8w7zzEnLCoeDA6_NlYYdYCOBVAaIALnbIjDdKMlVXr7tkBhIqBlXZ7JODlJaQSwk-I6vL3nRfKSQ6eGqoD30YkbWT9xhpO3VvLGFcB4v0Y8IJ6dS7PHg08W1YB9NTE2NYm46u4mAxJfoZxgVtzWgXLIVvZA5XmCX9SH_3HJE9b7qEx7_9kLzcXD9f3bGHp9v7q8sHZmUzH1mbTRnunJ_XtXDKOu7rtgJofCkVeC-9RYXWzVE0ZauchEZgLa1sSyFK2chDcrbdmy_Lp6dRv4dksetMj8OUNFfAoRQg5hk9_YMuhynmv2Sqzl-qGwUiU3xL2TikFNHrVQzvJn5pDnqTgV7qnIHeZKBB6JxB1lxsNZidrgNGnWzA3qILEe2o3RD-Uf8AVE-QPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1672168702</pqid></control><display><type>article</type><title>Analysis of a finite-buffer bulk-service queue under Markovian arrival process with batch-size-dependent service</title><source>Elsevier ScienceDirect Journals</source><creator>Banerjee, A. ; Gupta, U.C. ; Chakravarthy, S.R.</creator><creatorcontrib>Banerjee, A. ; Gupta, U.C. ; Chakravarthy, S.R.</creatorcontrib><description>We consider a finite capacity single server queue in which the customers arrive according to a Markovian arrival process. The customers are served in batches following a ‘general bulk service rule’. The service times, which depend on the size of the batch, are generally distributed. We obtain, in steady-state, the joint distribution of the random variables of interest at various epochs. Efficient computational procedures in the case of phase type services are presented. An illustrative numerical example to bring out the qualitative nature of the model is presented.</description><identifier>ISSN: 0305-0548</identifier><identifier>EISSN: 1873-765X</identifier><identifier>EISSN: 0305-0548</identifier><identifier>DOI: 10.1016/j.cor.2015.02.012</identifier><identifier>CODEN: CMORAP</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Algorithmic probability ; Arrivals ; Computer simulation ; Customer services ; Customers ; Finite capacity ; General bulk service rule ; Markov analysis ; Markov processes ; Markovian arrival process ; Mathematical models ; Operations research ; Phase type distribution ; Queue ; Queues ; Queuing theory ; Random variables ; Servers ; Studies</subject><ispartof>Computers & operations research, 2015-08, Vol.60, p.138-149</ispartof><rights>2015 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Aug 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-b016a1ddf9662d7cd1f6b5008f4370ff3fce7ecd9e284b7d3082e63c3b4224383</citedby><cites>FETCH-LOGICAL-c389t-b016a1ddf9662d7cd1f6b5008f4370ff3fce7ecd9e284b7d3082e63c3b4224383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S030505481500043X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Banerjee, A.</creatorcontrib><creatorcontrib>Gupta, U.C.</creatorcontrib><creatorcontrib>Chakravarthy, S.R.</creatorcontrib><title>Analysis of a finite-buffer bulk-service queue under Markovian arrival process with batch-size-dependent service</title><title>Computers & operations research</title><description>We consider a finite capacity single server queue in which the customers arrive according to a Markovian arrival process. The customers are served in batches following a ‘general bulk service rule’. The service times, which depend on the size of the batch, are generally distributed. We obtain, in steady-state, the joint distribution of the random variables of interest at various epochs. Efficient computational procedures in the case of phase type services are presented. An illustrative numerical example to bring out the qualitative nature of the model is presented.</description><subject>Algorithmic probability</subject><subject>Arrivals</subject><subject>Computer simulation</subject><subject>Customer services</subject><subject>Customers</subject><subject>Finite capacity</subject><subject>General bulk service rule</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>Markovian arrival process</subject><subject>Mathematical models</subject><subject>Operations research</subject><subject>Phase type distribution</subject><subject>Queue</subject><subject>Queues</subject><subject>Queuing theory</subject><subject>Random variables</subject><subject>Servers</subject><subject>Studies</subject><issn>0305-0548</issn><issn>1873-765X</issn><issn>0305-0548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LxDAQhoMouH78AG8BL15SJ0nbdPEk4hcoXhS8hTSZsFlruybtiv56s6wnD85lDvO8w7zzEnLCoeDA6_NlYYdYCOBVAaIALnbIjDdKMlVXr7tkBhIqBlXZ7JODlJaQSwk-I6vL3nRfKSQ6eGqoD30YkbWT9xhpO3VvLGFcB4v0Y8IJ6dS7PHg08W1YB9NTE2NYm46u4mAxJfoZxgVtzWgXLIVvZA5XmCX9SH_3HJE9b7qEx7_9kLzcXD9f3bGHp9v7q8sHZmUzH1mbTRnunJ_XtXDKOu7rtgJofCkVeC-9RYXWzVE0ZauchEZgLa1sSyFK2chDcrbdmy_Lp6dRv4dksetMj8OUNFfAoRQg5hk9_YMuhynmv2Sqzl-qGwUiU3xL2TikFNHrVQzvJn5pDnqTgV7qnIHeZKBB6JxB1lxsNZidrgNGnWzA3qILEe2o3RD-Uf8AVE-QPQ</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Banerjee, A.</creator><creator>Gupta, U.C.</creator><creator>Chakravarthy, S.R.</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150801</creationdate><title>Analysis of a finite-buffer bulk-service queue under Markovian arrival process with batch-size-dependent service</title><author>Banerjee, A. ; Gupta, U.C. ; Chakravarthy, S.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-b016a1ddf9662d7cd1f6b5008f4370ff3fce7ecd9e284b7d3082e63c3b4224383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithmic probability</topic><topic>Arrivals</topic><topic>Computer simulation</topic><topic>Customer services</topic><topic>Customers</topic><topic>Finite capacity</topic><topic>General bulk service rule</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>Markovian arrival process</topic><topic>Mathematical models</topic><topic>Operations research</topic><topic>Phase type distribution</topic><topic>Queue</topic><topic>Queues</topic><topic>Queuing theory</topic><topic>Random variables</topic><topic>Servers</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banerjee, A.</creatorcontrib><creatorcontrib>Gupta, U.C.</creatorcontrib><creatorcontrib>Chakravarthy, S.R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banerjee, A.</au><au>Gupta, U.C.</au><au>Chakravarthy, S.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of a finite-buffer bulk-service queue under Markovian arrival process with batch-size-dependent service</atitle><jtitle>Computers & operations research</jtitle><date>2015-08-01</date><risdate>2015</risdate><volume>60</volume><spage>138</spage><epage>149</epage><pages>138-149</pages><issn>0305-0548</issn><eissn>1873-765X</eissn><eissn>0305-0548</eissn><coden>CMORAP</coden><abstract>We consider a finite capacity single server queue in which the customers arrive according to a Markovian arrival process. The customers are served in batches following a ‘general bulk service rule’. The service times, which depend on the size of the batch, are generally distributed. We obtain, in steady-state, the joint distribution of the random variables of interest at various epochs. Efficient computational procedures in the case of phase type services are presented. An illustrative numerical example to bring out the qualitative nature of the model is presented.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cor.2015.02.012</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-0548 |
ispartof | Computers & operations research, 2015-08, Vol.60, p.138-149 |
issn | 0305-0548 1873-765X 0305-0548 |
language | eng |
recordid | cdi_proquest_miscellaneous_1701042029 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithmic probability Arrivals Computer simulation Customer services Customers Finite capacity General bulk service rule Markov analysis Markov processes Markovian arrival process Mathematical models Operations research Phase type distribution Queue Queues Queuing theory Random variables Servers Studies |
title | Analysis of a finite-buffer bulk-service queue under Markovian arrival process with batch-size-dependent service |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A02%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20a%20finite-buffer%20bulk-service%20queue%20under%20Markovian%20arrival%20process%20with%20batch-size-dependent%20service&rft.jtitle=Computers%20&%20operations%20research&rft.au=Banerjee,%20A.&rft.date=2015-08-01&rft.volume=60&rft.spage=138&rft.epage=149&rft.pages=138-149&rft.issn=0305-0548&rft.eissn=1873-765X&rft.coden=CMORAP&rft_id=info:doi/10.1016/j.cor.2015.02.012&rft_dat=%3Cproquest_cross%3E3650871741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1672168702&rft_id=info:pmid/&rft_els_id=S030505481500043X&rfr_iscdi=true |