Broadband isotropic and anisotropic permittivity determination using partially filled coaxial airlines

ABSTRACT A method for determining the complex permittivity for material specimens with isotropic or biaxially anisotropic dielectric properties is described and representative measured results are presented. The method extracts the material permittivity through the utilization of computational elect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microwave and optical technology letters 2015-08, Vol.57 (8), p.1864-1868
Hauptverfasser: Scott, Mark M., Morris, Andrew P., Reid, David R., Bean, Jeffrey A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1868
container_issue 8
container_start_page 1864
container_title Microwave and optical technology letters
container_volume 57
creator Scott, Mark M.
Morris, Andrew P.
Reid, David R.
Bean, Jeffrey A.
description ABSTRACT A method for determining the complex permittivity for material specimens with isotropic or biaxially anisotropic dielectric properties is described and representative measured results are presented. The method extracts the material permittivity through the utilization of computational electromagnetic simulations of specimen transmission measurements made with a broadband (50 MHz to over 500 MHz) coaxial airline with a material specimen which partially fills the waveguide cross‐section. A number of independent transmission measurements equal to the number of unknown permittivity terms is required for unique material permittivity determination. For isotropic specimens, a single specimen orientation is required, whereas for anisotropic specimens, different specimen orientations in the airline are required to probe the unknown permittivity axes and thus ensure unique material permittivity determination. Measurements using a 3.5‐inch outer diameter coaxial airline were made for known isotropic specimens as well as an anisotropic lossy material specimen. This technique provides the material measurement community with a mechanism to characterize a single specimen of complex shape and biaxial dielectric anisotropy at low frequencies covering multiple rectangular waveguide bands simultaneously and represents a significant advance in the current measurement state‐of‐the‐art particularly at frequencies below 100 MHz. © 2015 Wiley Periodicals, Inc. Microwave Opt Technol Lett 57:1864–1868, 2015
doi_str_mv 10.1002/mop.29212
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701038528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3696972701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3282-b20c9bd5460840d22360396a7eae3aed21816d844aed92747864079e5e82cd133</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEqVw4B9E4gKHwNpOYudIy1OCwqGoR8uNXeTixsF2oP33pJSHhMRpd1bfjFaD0CGGUwxAzhauOSUlwWQL9TCUPCWsgG3UA17mKckY20V7IcwBgDJGemg28E6qqaxVYoKL3jWmStZK1r-60X5hYjRvJq4SpeNa1jIaVydtMPVz0kgfjbR2lcyMtVollZPL7pBI462pddhHOzNpgz74mn30dHU5Ht6kdw_Xt8Pzu7SihJN0SqAqpyrPCuAZKEJoAbQsJNNSU6kVwRwXimdZt5eEZYwXGbBS55qTSmFK--h4k9t499rqEMXChEpbK2vt2iAwAwyU54R36NEfdO5aX3ffCVxwmpXQ5XXUyYaqvAvB65lovFlIvxIYxLpx0TUuPhvv2LMN-26sXv0PivuHx29HunGYEPXyxyH9iygYZbmYjK7FaJCPLyZ8IMb0A5KSknY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1683490133</pqid></control><display><type>article</type><title>Broadband isotropic and anisotropic permittivity determination using partially filled coaxial airlines</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Scott, Mark M. ; Morris, Andrew P. ; Reid, David R. ; Bean, Jeffrey A.</creator><creatorcontrib>Scott, Mark M. ; Morris, Andrew P. ; Reid, David R. ; Bean, Jeffrey A.</creatorcontrib><description>ABSTRACT A method for determining the complex permittivity for material specimens with isotropic or biaxially anisotropic dielectric properties is described and representative measured results are presented. The method extracts the material permittivity through the utilization of computational electromagnetic simulations of specimen transmission measurements made with a broadband (50 MHz to over 500 MHz) coaxial airline with a material specimen which partially fills the waveguide cross‐section. A number of independent transmission measurements equal to the number of unknown permittivity terms is required for unique material permittivity determination. For isotropic specimens, a single specimen orientation is required, whereas for anisotropic specimens, different specimen orientations in the airline are required to probe the unknown permittivity axes and thus ensure unique material permittivity determination. Measurements using a 3.5‐inch outer diameter coaxial airline were made for known isotropic specimens as well as an anisotropic lossy material specimen. This technique provides the material measurement community with a mechanism to characterize a single specimen of complex shape and biaxial dielectric anisotropy at low frequencies covering multiple rectangular waveguide bands simultaneously and represents a significant advance in the current measurement state‐of‐the‐art particularly at frequencies below 100 MHz. © 2015 Wiley Periodicals, Inc. Microwave Opt Technol Lett 57:1864–1868, 2015</description><identifier>ISSN: 0895-2477</identifier><identifier>EISSN: 1098-2760</identifier><identifier>DOI: 10.1002/mop.29212</identifier><identifier>CODEN: MOTLEO</identifier><language>eng</language><publisher>New York: Blackwell Publishing Ltd</publisher><subject>Airlines ; Anisotropy ; Broadband ; coaxial airline ; Complex permittivity ; computational electromagnetics ; Computer simulation ; Dielectric constant ; measurements ; Microwaves ; Orientation ; Permittivity</subject><ispartof>Microwave and optical technology letters, 2015-08, Vol.57 (8), p.1864-1868</ispartof><rights>2015 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3282-b20c9bd5460840d22360396a7eae3aed21816d844aed92747864079e5e82cd133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmop.29212$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmop.29212$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Scott, Mark M.</creatorcontrib><creatorcontrib>Morris, Andrew P.</creatorcontrib><creatorcontrib>Reid, David R.</creatorcontrib><creatorcontrib>Bean, Jeffrey A.</creatorcontrib><title>Broadband isotropic and anisotropic permittivity determination using partially filled coaxial airlines</title><title>Microwave and optical technology letters</title><addtitle>Microw. Opt. Technol. Lett</addtitle><description>ABSTRACT A method for determining the complex permittivity for material specimens with isotropic or biaxially anisotropic dielectric properties is described and representative measured results are presented. The method extracts the material permittivity through the utilization of computational electromagnetic simulations of specimen transmission measurements made with a broadband (50 MHz to over 500 MHz) coaxial airline with a material specimen which partially fills the waveguide cross‐section. A number of independent transmission measurements equal to the number of unknown permittivity terms is required for unique material permittivity determination. For isotropic specimens, a single specimen orientation is required, whereas for anisotropic specimens, different specimen orientations in the airline are required to probe the unknown permittivity axes and thus ensure unique material permittivity determination. Measurements using a 3.5‐inch outer diameter coaxial airline were made for known isotropic specimens as well as an anisotropic lossy material specimen. This technique provides the material measurement community with a mechanism to characterize a single specimen of complex shape and biaxial dielectric anisotropy at low frequencies covering multiple rectangular waveguide bands simultaneously and represents a significant advance in the current measurement state‐of‐the‐art particularly at frequencies below 100 MHz. © 2015 Wiley Periodicals, Inc. Microwave Opt Technol Lett 57:1864–1868, 2015</description><subject>Airlines</subject><subject>Anisotropy</subject><subject>Broadband</subject><subject>coaxial airline</subject><subject>Complex permittivity</subject><subject>computational electromagnetics</subject><subject>Computer simulation</subject><subject>Dielectric constant</subject><subject>measurements</subject><subject>Microwaves</subject><subject>Orientation</subject><subject>Permittivity</subject><issn>0895-2477</issn><issn>1098-2760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAQhC0EEqVw4B9E4gKHwNpOYudIy1OCwqGoR8uNXeTixsF2oP33pJSHhMRpd1bfjFaD0CGGUwxAzhauOSUlwWQL9TCUPCWsgG3UA17mKckY20V7IcwBgDJGemg28E6qqaxVYoKL3jWmStZK1r-60X5hYjRvJq4SpeNa1jIaVydtMPVz0kgfjbR2lcyMtVollZPL7pBI462pddhHOzNpgz74mn30dHU5Ht6kdw_Xt8Pzu7SihJN0SqAqpyrPCuAZKEJoAbQsJNNSU6kVwRwXimdZt5eEZYwXGbBS55qTSmFK--h4k9t499rqEMXChEpbK2vt2iAwAwyU54R36NEfdO5aX3ffCVxwmpXQ5XXUyYaqvAvB65lovFlIvxIYxLpx0TUuPhvv2LMN-26sXv0PivuHx29HunGYEPXyxyH9iygYZbmYjK7FaJCPLyZ8IMb0A5KSknY</recordid><startdate>201508</startdate><enddate>201508</enddate><creator>Scott, Mark M.</creator><creator>Morris, Andrew P.</creator><creator>Reid, David R.</creator><creator>Bean, Jeffrey A.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201508</creationdate><title>Broadband isotropic and anisotropic permittivity determination using partially filled coaxial airlines</title><author>Scott, Mark M. ; Morris, Andrew P. ; Reid, David R. ; Bean, Jeffrey A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3282-b20c9bd5460840d22360396a7eae3aed21816d844aed92747864079e5e82cd133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Airlines</topic><topic>Anisotropy</topic><topic>Broadband</topic><topic>coaxial airline</topic><topic>Complex permittivity</topic><topic>computational electromagnetics</topic><topic>Computer simulation</topic><topic>Dielectric constant</topic><topic>measurements</topic><topic>Microwaves</topic><topic>Orientation</topic><topic>Permittivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scott, Mark M.</creatorcontrib><creatorcontrib>Morris, Andrew P.</creatorcontrib><creatorcontrib>Reid, David R.</creatorcontrib><creatorcontrib>Bean, Jeffrey A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Microwave and optical technology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scott, Mark M.</au><au>Morris, Andrew P.</au><au>Reid, David R.</au><au>Bean, Jeffrey A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broadband isotropic and anisotropic permittivity determination using partially filled coaxial airlines</atitle><jtitle>Microwave and optical technology letters</jtitle><addtitle>Microw. Opt. Technol. Lett</addtitle><date>2015-08</date><risdate>2015</risdate><volume>57</volume><issue>8</issue><spage>1864</spage><epage>1868</epage><pages>1864-1868</pages><issn>0895-2477</issn><eissn>1098-2760</eissn><coden>MOTLEO</coden><abstract>ABSTRACT A method for determining the complex permittivity for material specimens with isotropic or biaxially anisotropic dielectric properties is described and representative measured results are presented. The method extracts the material permittivity through the utilization of computational electromagnetic simulations of specimen transmission measurements made with a broadband (50 MHz to over 500 MHz) coaxial airline with a material specimen which partially fills the waveguide cross‐section. A number of independent transmission measurements equal to the number of unknown permittivity terms is required for unique material permittivity determination. For isotropic specimens, a single specimen orientation is required, whereas for anisotropic specimens, different specimen orientations in the airline are required to probe the unknown permittivity axes and thus ensure unique material permittivity determination. Measurements using a 3.5‐inch outer diameter coaxial airline were made for known isotropic specimens as well as an anisotropic lossy material specimen. This technique provides the material measurement community with a mechanism to characterize a single specimen of complex shape and biaxial dielectric anisotropy at low frequencies covering multiple rectangular waveguide bands simultaneously and represents a significant advance in the current measurement state‐of‐the‐art particularly at frequencies below 100 MHz. © 2015 Wiley Periodicals, Inc. Microwave Opt Technol Lett 57:1864–1868, 2015</abstract><cop>New York</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/mop.29212</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0895-2477
ispartof Microwave and optical technology letters, 2015-08, Vol.57 (8), p.1864-1868
issn 0895-2477
1098-2760
language eng
recordid cdi_proquest_miscellaneous_1701038528
source Wiley Online Library Journals Frontfile Complete
subjects Airlines
Anisotropy
Broadband
coaxial airline
Complex permittivity
computational electromagnetics
Computer simulation
Dielectric constant
measurements
Microwaves
Orientation
Permittivity
title Broadband isotropic and anisotropic permittivity determination using partially filled coaxial airlines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A29%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broadband%20isotropic%20and%20anisotropic%20permittivity%20determination%20using%20partially%20filled%20coaxial%20airlines&rft.jtitle=Microwave%20and%20optical%20technology%20letters&rft.au=Scott,%20Mark%20M.&rft.date=2015-08&rft.volume=57&rft.issue=8&rft.spage=1864&rft.epage=1868&rft.pages=1864-1868&rft.issn=0895-2477&rft.eissn=1098-2760&rft.coden=MOTLEO&rft_id=info:doi/10.1002/mop.29212&rft_dat=%3Cproquest_cross%3E3696972701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1683490133&rft_id=info:pmid/&rfr_iscdi=true