SOM ensemble for unsupervised outlier analysis. Application to outlier identification in the Gaia astronomical survey
► Gaia ESA mission will survey more than one billion objects in our Galaxy and beyond. ► Automated analysis tools are being developed to classifying the observed objects. ► Our work is devoted to the analysis of classification outliers. ► We present a novel technique for segmentation of outliers bas...
Gespeichert in:
Veröffentlicht in: | Expert systems with applications 2013-04, Vol.40 (5), p.1530-1541 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1541 |
---|---|
container_issue | 5 |
container_start_page | 1530 |
container_title | Expert systems with applications |
container_volume | 40 |
creator | Fustes, Diego Dafonte, Carlos Arcay, Bernardino Manteiga, Minia Smith, Kester Vallenari, Antonella Luri, Xavier |
description | ► Gaia ESA mission will survey more than one billion objects in our Galaxy and beyond. ► Automated analysis tools are being developed to classifying the observed objects. ► Our work is devoted to the analysis of classification outliers. ► We present a novel technique for segmentation of outliers based on ensemble SOM. ► It allows for data exploration and knowledge discovery in huge astronomical databases.
Gaia is an ESA cornerstone astronomical mission that will observe with unprecedented precision positions, distances, space motions, and many physical properties of more than one billion objects in our Galaxy and beyond. It will observe all objects in the sky in the visible magnitude range from 6 to 20, up to approximately 109 sources. An international scientific consortium, the Gaia Data Processing and Analysis Consortium (Gaia DPAC), has organized itself in several coordination units, with the aim, among others, of addressing the work of classifying the observed astronomical sources, using both supervised and unsupervised classification algorithms. This work focuses on the analysis of classification outliers by means of unsupervised classification. We present a novel method to combine SOMs trained with independent features that are calculated from spectrophotometry. The method as described here can help to improve the models used for the supervised classification of astronomical sources. Furthermore, it allows for data exploration and knowledge discovery in huge astronomical databases such as the upcoming Gaia mission. |
doi_str_mv | 10.1016/j.eswa.2012.08.069 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701036214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417412010305</els_id><sourcerecordid>1283673569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-959295e3d0e9f1c545515358889096f96254b0aa65a7bd333eba1bd0aa53e0d43</originalsourceid><addsrcrecordid>eNqNkU-LFDEQxYMoOK5-AU-5CF66zZ9O0gEvy6KrsLIH9RzS6WrM0JO0qe6R-fZmnHWP4qmg3u9VwXuEvOas5Yzrd_sW8JdvBeOiZX3LtH1Cdrw3stHGyqdkx6wyTcdN95y8QNwzxg1jZke2r_dfKCSEwzADnXKhW8JtgXKMCCPN2zpHKNQnP58wYkuvl2WOwa8xJ7rmRyCOkNY4_VViFX8AvfXRU49rySkfqjZT3MoRTi_Js8nPCK8e5hX5_vHDt5tPzd397eeb67smSKvXxiorrAI5MrATD6pTiiup-r63zOrJaqG6gXmvlTfDKKWEwfNhrBslgY2dvCJvL3eXkn9ugKs7RAwwzz5B3tDVEDiTWvD_QEUvtZFK24qKCxpKRiwwuaXEgy8nx5k71-H27lyHO9fhWO_YH9Obh_seaxBT8SlEfHQKw8-diMq9v3BQcznWaB2GCCnAGAuE1Y05_uvNb6tlodA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283673569</pqid></control><display><type>article</type><title>SOM ensemble for unsupervised outlier analysis. Application to outlier identification in the Gaia astronomical survey</title><source>Access via ScienceDirect (Elsevier)</source><creator>Fustes, Diego ; Dafonte, Carlos ; Arcay, Bernardino ; Manteiga, Minia ; Smith, Kester ; Vallenari, Antonella ; Luri, Xavier</creator><creatorcontrib>Fustes, Diego ; Dafonte, Carlos ; Arcay, Bernardino ; Manteiga, Minia ; Smith, Kester ; Vallenari, Antonella ; Luri, Xavier</creatorcontrib><description>► Gaia ESA mission will survey more than one billion objects in our Galaxy and beyond. ► Automated analysis tools are being developed to classifying the observed objects. ► Our work is devoted to the analysis of classification outliers. ► We present a novel technique for segmentation of outliers based on ensemble SOM. ► It allows for data exploration and knowledge discovery in huge astronomical databases.
Gaia is an ESA cornerstone astronomical mission that will observe with unprecedented precision positions, distances, space motions, and many physical properties of more than one billion objects in our Galaxy and beyond. It will observe all objects in the sky in the visible magnitude range from 6 to 20, up to approximately 109 sources. An international scientific consortium, the Gaia Data Processing and Analysis Consortium (Gaia DPAC), has organized itself in several coordination units, with the aim, among others, of addressing the work of classifying the observed astronomical sources, using both supervised and unsupervised classification algorithms. This work focuses on the analysis of classification outliers by means of unsupervised classification. We present a novel method to combine SOMs trained with independent features that are calculated from spectrophotometry. The method as described here can help to improve the models used for the supervised classification of astronomical sources. Furthermore, it allows for data exploration and knowledge discovery in huge astronomical databases such as the upcoming Gaia mission.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2012.08.069</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Applied sciences ; Artificial intelligence ; Astronomical bodies ; Astronomical instruments ; Classification ; Classification outlier ; Computer science; control theory; systems ; Connectionism. Neural networks ; Data processing. List processing. Character string processing ; Ensemble method ; European Space Agency ; Exact sciences and technology ; Expert systems ; FFT ; Gaia mission ; Galaxies ; Knowledge discovery in astronomy ; Mathematical models ; Memory organisation. Data processing ; Physical properties ; Self-Organizing Map ; Software ; Spectrophotometry ; Unsupervised classification ; Wavelet transform</subject><ispartof>Expert systems with applications, 2013-04, Vol.40 (5), p.1530-1541</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-959295e3d0e9f1c545515358889096f96254b0aa65a7bd333eba1bd0aa53e0d43</citedby><cites>FETCH-LOGICAL-c396t-959295e3d0e9f1c545515358889096f96254b0aa65a7bd333eba1bd0aa53e0d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2012.08.069$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27100172$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fustes, Diego</creatorcontrib><creatorcontrib>Dafonte, Carlos</creatorcontrib><creatorcontrib>Arcay, Bernardino</creatorcontrib><creatorcontrib>Manteiga, Minia</creatorcontrib><creatorcontrib>Smith, Kester</creatorcontrib><creatorcontrib>Vallenari, Antonella</creatorcontrib><creatorcontrib>Luri, Xavier</creatorcontrib><title>SOM ensemble for unsupervised outlier analysis. Application to outlier identification in the Gaia astronomical survey</title><title>Expert systems with applications</title><description>► Gaia ESA mission will survey more than one billion objects in our Galaxy and beyond. ► Automated analysis tools are being developed to classifying the observed objects. ► Our work is devoted to the analysis of classification outliers. ► We present a novel technique for segmentation of outliers based on ensemble SOM. ► It allows for data exploration and knowledge discovery in huge astronomical databases.
Gaia is an ESA cornerstone astronomical mission that will observe with unprecedented precision positions, distances, space motions, and many physical properties of more than one billion objects in our Galaxy and beyond. It will observe all objects in the sky in the visible magnitude range from 6 to 20, up to approximately 109 sources. An international scientific consortium, the Gaia Data Processing and Analysis Consortium (Gaia DPAC), has organized itself in several coordination units, with the aim, among others, of addressing the work of classifying the observed astronomical sources, using both supervised and unsupervised classification algorithms. This work focuses on the analysis of classification outliers by means of unsupervised classification. We present a novel method to combine SOMs trained with independent features that are calculated from spectrophotometry. The method as described here can help to improve the models used for the supervised classification of astronomical sources. Furthermore, it allows for data exploration and knowledge discovery in huge astronomical databases such as the upcoming Gaia mission.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Astronomical bodies</subject><subject>Astronomical instruments</subject><subject>Classification</subject><subject>Classification outlier</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Data processing. List processing. Character string processing</subject><subject>Ensemble method</subject><subject>European Space Agency</subject><subject>Exact sciences and technology</subject><subject>Expert systems</subject><subject>FFT</subject><subject>Gaia mission</subject><subject>Galaxies</subject><subject>Knowledge discovery in astronomy</subject><subject>Mathematical models</subject><subject>Memory organisation. Data processing</subject><subject>Physical properties</subject><subject>Self-Organizing Map</subject><subject>Software</subject><subject>Spectrophotometry</subject><subject>Unsupervised classification</subject><subject>Wavelet transform</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkU-LFDEQxYMoOK5-AU-5CF66zZ9O0gEvy6KrsLIH9RzS6WrM0JO0qe6R-fZmnHWP4qmg3u9VwXuEvOas5Yzrd_sW8JdvBeOiZX3LtH1Cdrw3stHGyqdkx6wyTcdN95y8QNwzxg1jZke2r_dfKCSEwzADnXKhW8JtgXKMCCPN2zpHKNQnP58wYkuvl2WOwa8xJ7rmRyCOkNY4_VViFX8AvfXRU49rySkfqjZT3MoRTi_Js8nPCK8e5hX5_vHDt5tPzd397eeb67smSKvXxiorrAI5MrATD6pTiiup-r63zOrJaqG6gXmvlTfDKKWEwfNhrBslgY2dvCJvL3eXkn9ugKs7RAwwzz5B3tDVEDiTWvD_QEUvtZFK24qKCxpKRiwwuaXEgy8nx5k71-H27lyHO9fhWO_YH9Obh_seaxBT8SlEfHQKw8-diMq9v3BQcznWaB2GCCnAGAuE1Y05_uvNb6tlodA</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Fustes, Diego</creator><creator>Dafonte, Carlos</creator><creator>Arcay, Bernardino</creator><creator>Manteiga, Minia</creator><creator>Smith, Kester</creator><creator>Vallenari, Antonella</creator><creator>Luri, Xavier</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130401</creationdate><title>SOM ensemble for unsupervised outlier analysis. Application to outlier identification in the Gaia astronomical survey</title><author>Fustes, Diego ; Dafonte, Carlos ; Arcay, Bernardino ; Manteiga, Minia ; Smith, Kester ; Vallenari, Antonella ; Luri, Xavier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-959295e3d0e9f1c545515358889096f96254b0aa65a7bd333eba1bd0aa53e0d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Astronomical bodies</topic><topic>Astronomical instruments</topic><topic>Classification</topic><topic>Classification outlier</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Data processing. List processing. Character string processing</topic><topic>Ensemble method</topic><topic>European Space Agency</topic><topic>Exact sciences and technology</topic><topic>Expert systems</topic><topic>FFT</topic><topic>Gaia mission</topic><topic>Galaxies</topic><topic>Knowledge discovery in astronomy</topic><topic>Mathematical models</topic><topic>Memory organisation. Data processing</topic><topic>Physical properties</topic><topic>Self-Organizing Map</topic><topic>Software</topic><topic>Spectrophotometry</topic><topic>Unsupervised classification</topic><topic>Wavelet transform</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fustes, Diego</creatorcontrib><creatorcontrib>Dafonte, Carlos</creatorcontrib><creatorcontrib>Arcay, Bernardino</creatorcontrib><creatorcontrib>Manteiga, Minia</creatorcontrib><creatorcontrib>Smith, Kester</creatorcontrib><creatorcontrib>Vallenari, Antonella</creatorcontrib><creatorcontrib>Luri, Xavier</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fustes, Diego</au><au>Dafonte, Carlos</au><au>Arcay, Bernardino</au><au>Manteiga, Minia</au><au>Smith, Kester</au><au>Vallenari, Antonella</au><au>Luri, Xavier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SOM ensemble for unsupervised outlier analysis. Application to outlier identification in the Gaia astronomical survey</atitle><jtitle>Expert systems with applications</jtitle><date>2013-04-01</date><risdate>2013</risdate><volume>40</volume><issue>5</issue><spage>1530</spage><epage>1541</epage><pages>1530-1541</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>► Gaia ESA mission will survey more than one billion objects in our Galaxy and beyond. ► Automated analysis tools are being developed to classifying the observed objects. ► Our work is devoted to the analysis of classification outliers. ► We present a novel technique for segmentation of outliers based on ensemble SOM. ► It allows for data exploration and knowledge discovery in huge astronomical databases.
Gaia is an ESA cornerstone astronomical mission that will observe with unprecedented precision positions, distances, space motions, and many physical properties of more than one billion objects in our Galaxy and beyond. It will observe all objects in the sky in the visible magnitude range from 6 to 20, up to approximately 109 sources. An international scientific consortium, the Gaia Data Processing and Analysis Consortium (Gaia DPAC), has organized itself in several coordination units, with the aim, among others, of addressing the work of classifying the observed astronomical sources, using both supervised and unsupervised classification algorithms. This work focuses on the analysis of classification outliers by means of unsupervised classification. We present a novel method to combine SOMs trained with independent features that are calculated from spectrophotometry. The method as described here can help to improve the models used for the supervised classification of astronomical sources. Furthermore, it allows for data exploration and knowledge discovery in huge astronomical databases such as the upcoming Gaia mission.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2012.08.069</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4174 |
ispartof | Expert systems with applications, 2013-04, Vol.40 (5), p.1530-1541 |
issn | 0957-4174 1873-6793 |
language | eng |
recordid | cdi_proquest_miscellaneous_1701036214 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Artificial intelligence Astronomical bodies Astronomical instruments Classification Classification outlier Computer science control theory systems Connectionism. Neural networks Data processing. List processing. Character string processing Ensemble method European Space Agency Exact sciences and technology Expert systems FFT Gaia mission Galaxies Knowledge discovery in astronomy Mathematical models Memory organisation. Data processing Physical properties Self-Organizing Map Software Spectrophotometry Unsupervised classification Wavelet transform |
title | SOM ensemble for unsupervised outlier analysis. Application to outlier identification in the Gaia astronomical survey |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T01%3A55%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SOM%20ensemble%20for%20unsupervised%20outlier%20analysis.%20Application%20to%20outlier%20identification%20in%20the%20Gaia%20astronomical%20survey&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Fustes,%20Diego&rft.date=2013-04-01&rft.volume=40&rft.issue=5&rft.spage=1530&rft.epage=1541&rft.pages=1530-1541&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2012.08.069&rft_dat=%3Cproquest_cross%3E1283673569%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283673569&rft_id=info:pmid/&rft_els_id=S0957417412010305&rfr_iscdi=true |