Fluctuation theorem for heat transport probed by a thermal probe electrode

We analyze the full-counting statistics of the electric heat current flowing in a two-terminal quantum conductor whose temperature is probed by a third electrode ("probe electrode"). In particular we demonstrate that the cumulant-generating function obeys the fluctuation theorem in the pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2014-05, Vol.89 (20), Article 205314
Hauptverfasser: Utsumi, Y., Entin-Wohlman, O., Aharony, A., Kubo, T., Tokura, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page
container_title Physical review. B, Condensed matter and materials physics
container_volume 89
creator Utsumi, Y.
Entin-Wohlman, O.
Aharony, A.
Kubo, T.
Tokura, Y.
description We analyze the full-counting statistics of the electric heat current flowing in a two-terminal quantum conductor whose temperature is probed by a third electrode ("probe electrode"). In particular we demonstrate that the cumulant-generating function obeys the fluctuation theorem in the presence of a constant magnetic field. The analysis is based on the scattering matrix of the three-terminal junction (comprising the two electronic terminals and the probe electrode), and a separation of time scales: it is assumed that the rapid charge transfer across the conductor and the rapid relaxation of the electrons inside the probe electrode give rise to much slower energy fluctuations in the latter. This separation allows for a stochastic treatment of the probe dynamics, and the reduction of the three-terminal setup to an effective two-terminal one. Expressions for the lowest nonlinear transport coefficients, e.g., the linear-response heat-current noise and the second nonlinear thermal conductance, are obtained and explicitly shown to preserve the symmetry of the fluctuation theorem for the two-terminal conductor. The derivation of our expressions, which is based on the transport coefficients of the three-terminal system explicitly satisfying the fluctuation theorem, requires full calculations of vertex corrections.
doi_str_mv 10.1103/PhysRevB.89.205314
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701032141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701032141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-c5032c7c60cafd50c99d9de2d7b0d3e03c3904ffecde52feef7a8a2d02379653</originalsourceid><addsrcrecordid>eNo1kMFKAzEURYMoWKs_4CpLN1NfkklnstRiq1JQpAt3IZO80MpMU5OM0L93yujqXR6He-EQcstgxhiI-_ftMX3gz-OsVjMOUrDyjEyYlFBwIT_PhwyqLoBxdkmuUvoCYKUq-YS8Ltve5t7kXdjTvMUQsaM-RLpFk2mOZp8OIWZ6iKFBR5sjNScsdqYdfxRbtDkGh9fkwps24c3fnZLN8mmzeC7Wb6uXxcO6sKKc58JKENxWdg7WeCfBKuWUQ-6qBpxAEFYoKL1H61Byj-grUxvugItKzaWYkruxdpj_7jFl3e2SxbY1ewx90qyCwQhnJRtQPqI2hpQien2Iu87Eo2agT970vzddKz16E79eO2Qt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701032141</pqid></control><display><type>article</type><title>Fluctuation theorem for heat transport probed by a thermal probe electrode</title><source>American Physical Society Journals</source><creator>Utsumi, Y. ; Entin-Wohlman, O. ; Aharony, A. ; Kubo, T. ; Tokura, Y.</creator><creatorcontrib>Utsumi, Y. ; Entin-Wohlman, O. ; Aharony, A. ; Kubo, T. ; Tokura, Y.</creatorcontrib><description>We analyze the full-counting statistics of the electric heat current flowing in a two-terminal quantum conductor whose temperature is probed by a third electrode ("probe electrode"). In particular we demonstrate that the cumulant-generating function obeys the fluctuation theorem in the presence of a constant magnetic field. The analysis is based on the scattering matrix of the three-terminal junction (comprising the two electronic terminals and the probe electrode), and a separation of time scales: it is assumed that the rapid charge transfer across the conductor and the rapid relaxation of the electrons inside the probe electrode give rise to much slower energy fluctuations in the latter. This separation allows for a stochastic treatment of the probe dynamics, and the reduction of the three-terminal setup to an effective two-terminal one. Expressions for the lowest nonlinear transport coefficients, e.g., the linear-response heat-current noise and the second nonlinear thermal conductance, are obtained and explicitly shown to preserve the symmetry of the fluctuation theorem for the two-terminal conductor. The derivation of our expressions, which is based on the transport coefficients of the three-terminal system explicitly satisfying the fluctuation theorem, requires full calculations of vertex corrections.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.89.205314</identifier><language>eng</language><subject>Condensed matter ; Conductors (devices) ; Electrodes ; Fluctuation ; Nonlinearity ; Preserves ; Separation ; Theorems ; Transport</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2014-05, Vol.89 (20), Article 205314</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-c5032c7c60cafd50c99d9de2d7b0d3e03c3904ffecde52feef7a8a2d02379653</citedby><cites>FETCH-LOGICAL-c346t-c5032c7c60cafd50c99d9de2d7b0d3e03c3904ffecde52feef7a8a2d02379653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Utsumi, Y.</creatorcontrib><creatorcontrib>Entin-Wohlman, O.</creatorcontrib><creatorcontrib>Aharony, A.</creatorcontrib><creatorcontrib>Kubo, T.</creatorcontrib><creatorcontrib>Tokura, Y.</creatorcontrib><title>Fluctuation theorem for heat transport probed by a thermal probe electrode</title><title>Physical review. B, Condensed matter and materials physics</title><description>We analyze the full-counting statistics of the electric heat current flowing in a two-terminal quantum conductor whose temperature is probed by a third electrode ("probe electrode"). In particular we demonstrate that the cumulant-generating function obeys the fluctuation theorem in the presence of a constant magnetic field. The analysis is based on the scattering matrix of the three-terminal junction (comprising the two electronic terminals and the probe electrode), and a separation of time scales: it is assumed that the rapid charge transfer across the conductor and the rapid relaxation of the electrons inside the probe electrode give rise to much slower energy fluctuations in the latter. This separation allows for a stochastic treatment of the probe dynamics, and the reduction of the three-terminal setup to an effective two-terminal one. Expressions for the lowest nonlinear transport coefficients, e.g., the linear-response heat-current noise and the second nonlinear thermal conductance, are obtained and explicitly shown to preserve the symmetry of the fluctuation theorem for the two-terminal conductor. The derivation of our expressions, which is based on the transport coefficients of the three-terminal system explicitly satisfying the fluctuation theorem, requires full calculations of vertex corrections.</description><subject>Condensed matter</subject><subject>Conductors (devices)</subject><subject>Electrodes</subject><subject>Fluctuation</subject><subject>Nonlinearity</subject><subject>Preserves</subject><subject>Separation</subject><subject>Theorems</subject><subject>Transport</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo1kMFKAzEURYMoWKs_4CpLN1NfkklnstRiq1JQpAt3IZO80MpMU5OM0L93yujqXR6He-EQcstgxhiI-_ftMX3gz-OsVjMOUrDyjEyYlFBwIT_PhwyqLoBxdkmuUvoCYKUq-YS8Ltve5t7kXdjTvMUQsaM-RLpFk2mOZp8OIWZ6iKFBR5sjNScsdqYdfxRbtDkGh9fkwps24c3fnZLN8mmzeC7Wb6uXxcO6sKKc58JKENxWdg7WeCfBKuWUQ-6qBpxAEFYoKL1H61Byj-grUxvugItKzaWYkruxdpj_7jFl3e2SxbY1ewx90qyCwQhnJRtQPqI2hpQien2Iu87Eo2agT970vzddKz16E79eO2Qt</recordid><startdate>20140522</startdate><enddate>20140522</enddate><creator>Utsumi, Y.</creator><creator>Entin-Wohlman, O.</creator><creator>Aharony, A.</creator><creator>Kubo, T.</creator><creator>Tokura, Y.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140522</creationdate><title>Fluctuation theorem for heat transport probed by a thermal probe electrode</title><author>Utsumi, Y. ; Entin-Wohlman, O. ; Aharony, A. ; Kubo, T. ; Tokura, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-c5032c7c60cafd50c99d9de2d7b0d3e03c3904ffecde52feef7a8a2d02379653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Condensed matter</topic><topic>Conductors (devices)</topic><topic>Electrodes</topic><topic>Fluctuation</topic><topic>Nonlinearity</topic><topic>Preserves</topic><topic>Separation</topic><topic>Theorems</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Utsumi, Y.</creatorcontrib><creatorcontrib>Entin-Wohlman, O.</creatorcontrib><creatorcontrib>Aharony, A.</creatorcontrib><creatorcontrib>Kubo, T.</creatorcontrib><creatorcontrib>Tokura, Y.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Utsumi, Y.</au><au>Entin-Wohlman, O.</au><au>Aharony, A.</au><au>Kubo, T.</au><au>Tokura, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluctuation theorem for heat transport probed by a thermal probe electrode</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2014-05-22</date><risdate>2014</risdate><volume>89</volume><issue>20</issue><artnum>205314</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>We analyze the full-counting statistics of the electric heat current flowing in a two-terminal quantum conductor whose temperature is probed by a third electrode ("probe electrode"). In particular we demonstrate that the cumulant-generating function obeys the fluctuation theorem in the presence of a constant magnetic field. The analysis is based on the scattering matrix of the three-terminal junction (comprising the two electronic terminals and the probe electrode), and a separation of time scales: it is assumed that the rapid charge transfer across the conductor and the rapid relaxation of the electrons inside the probe electrode give rise to much slower energy fluctuations in the latter. This separation allows for a stochastic treatment of the probe dynamics, and the reduction of the three-terminal setup to an effective two-terminal one. Expressions for the lowest nonlinear transport coefficients, e.g., the linear-response heat-current noise and the second nonlinear thermal conductance, are obtained and explicitly shown to preserve the symmetry of the fluctuation theorem for the two-terminal conductor. The derivation of our expressions, which is based on the transport coefficients of the three-terminal system explicitly satisfying the fluctuation theorem, requires full calculations of vertex corrections.</abstract><doi>10.1103/PhysRevB.89.205314</doi></addata></record>
fulltext fulltext
identifier ISSN: 1098-0121
ispartof Physical review. B, Condensed matter and materials physics, 2014-05, Vol.89 (20), Article 205314
issn 1098-0121
1550-235X
language eng
recordid cdi_proquest_miscellaneous_1701032141
source American Physical Society Journals
subjects Condensed matter
Conductors (devices)
Electrodes
Fluctuation
Nonlinearity
Preserves
Separation
Theorems
Transport
title Fluctuation theorem for heat transport probed by a thermal probe electrode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T11%3A04%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluctuation%20theorem%20for%20heat%20transport%20probed%20by%20a%20thermal%20probe%20electrode&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Utsumi,%20Y.&rft.date=2014-05-22&rft.volume=89&rft.issue=20&rft.artnum=205314&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.89.205314&rft_dat=%3Cproquest_cross%3E1701032141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701032141&rft_id=info:pmid/&rfr_iscdi=true