Three-dimensional printing of tissue phantoms for biophotonic imaging
We have investigated the potential of tissue phantoms fabricated with thermosoftening- and photopolymerization-based three-dimensional (3D) printers for use in evaluation of biophotonic imaging systems. The optical properties of printed polymer samples were measured and compared to biological tissue...
Gespeichert in:
Veröffentlicht in: | Optics letters 2014-05, Vol.39 (10), p.3010-3013 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3013 |
---|---|
container_issue | 10 |
container_start_page | 3010 |
container_title | Optics letters |
container_volume | 39 |
creator | Wang, Jianting Coburn, James Liang, Chia-Pin Woolsey, Nicholas Ramella-Roman, Jessica C Chen, Yu Pfefer, T Joshua |
description | We have investigated the potential of tissue phantoms fabricated with thermosoftening- and photopolymerization-based three-dimensional (3D) printers for use in evaluation of biophotonic imaging systems. The optical properties of printed polymer samples were measured and compared to biological tissues. Phantoms with subsurface channels as small as 0.2 mm in diameter were fabricated and imaged with microscopy, x-ray microtomography, and optical coherence tomography to characterize morphology. These phantoms were then implemented to evaluate the penetration depth of a hyperspectral reflectance imaging system used in conjunction with a near-infrared contrast agent. Results indicated that 3D printing may provide a suitable platform for performance testing in biophotonics, although subsurface imaging is critical to mitigate printer-to-printer variability in matrix homogeneity and feature microstructure. |
doi_str_mv | 10.1364/OL.39.003010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701015732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1542297426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-c1730d5968ca26960cb14ec65abe6ecce0bbcade541ae821c5077c2cf0361d6f3</originalsourceid><addsrcrecordid>eNqF0DtPwzAYhWELgWgpbMwoIwMpn-_1iKpykSJ1KXPkOF9aoyQOcTLw7wlqYWU6y6MzvITcUlhSrsTjNltyswTgQOGMzKnkJhXaiHMyBypUaqRhM3IV4wcAKM35JZkxYfSKKZiTze7QI6alb7CNPrS2Trret4Nv90moksHHOGLSHWw7hCYmVeiTwofuEIbQepf4xu4nek0uKltHvDntgrw_b3br1zTbvrytn7LUcSaG1FHNoZRGrZxlyihwBRXolLQFKnQOoSicLVEKanHFqJOgtWOuAq5oqSq-IPfH364PnyPGIW98dFjXtsUwxpzqKQKVmrP_qRSMGS2YmujDkbo-xNhjlU8JGtt_5RTyn8b5Nsu5yY-NJ353eh6LBss__BuVfwOWFHcX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1542297426</pqid></control><display><type>article</type><title>Three-dimensional printing of tissue phantoms for biophotonic imaging</title><source>MEDLINE</source><source>Optica Publishing Group Journals</source><creator>Wang, Jianting ; Coburn, James ; Liang, Chia-Pin ; Woolsey, Nicholas ; Ramella-Roman, Jessica C ; Chen, Yu ; Pfefer, T Joshua</creator><creatorcontrib>Wang, Jianting ; Coburn, James ; Liang, Chia-Pin ; Woolsey, Nicholas ; Ramella-Roman, Jessica C ; Chen, Yu ; Pfefer, T Joshua</creatorcontrib><description>We have investigated the potential of tissue phantoms fabricated with thermosoftening- and photopolymerization-based three-dimensional (3D) printers for use in evaluation of biophotonic imaging systems. The optical properties of printed polymer samples were measured and compared to biological tissues. Phantoms with subsurface channels as small as 0.2 mm in diameter were fabricated and imaged with microscopy, x-ray microtomography, and optical coherence tomography to characterize morphology. These phantoms were then implemented to evaluate the penetration depth of a hyperspectral reflectance imaging system used in conjunction with a near-infrared contrast agent. Results indicated that 3D printing may provide a suitable platform for performance testing in biophotonics, although subsurface imaging is critical to mitigate printer-to-printer variability in matrix homogeneity and feature microstructure.</description><identifier>ISSN: 0146-9592</identifier><identifier>EISSN: 1539-4794</identifier><identifier>DOI: 10.1364/OL.39.003010</identifier><identifier>PMID: 24978260</identifier><language>eng</language><publisher>United States</publisher><subject>Biological ; Biomimetic Materials - chemical synthesis ; Channels ; Contrast agents ; Equipment Design ; Equipment Failure Analysis ; Homogeneity ; Imaging ; Phantoms, Imaging ; Polymers - chemistry ; Printing, Three-Dimensional - instrumentation ; Reflectance ; Three dimensional ; Three dimensional printing ; Tomography - instrumentation</subject><ispartof>Optics letters, 2014-05, Vol.39 (10), p.3010-3013</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-c1730d5968ca26960cb14ec65abe6ecce0bbcade541ae821c5077c2cf0361d6f3</citedby><cites>FETCH-LOGICAL-c324t-c1730d5968ca26960cb14ec65abe6ecce0bbcade541ae821c5077c2cf0361d6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24978260$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jianting</creatorcontrib><creatorcontrib>Coburn, James</creatorcontrib><creatorcontrib>Liang, Chia-Pin</creatorcontrib><creatorcontrib>Woolsey, Nicholas</creatorcontrib><creatorcontrib>Ramella-Roman, Jessica C</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Pfefer, T Joshua</creatorcontrib><title>Three-dimensional printing of tissue phantoms for biophotonic imaging</title><title>Optics letters</title><addtitle>Opt Lett</addtitle><description>We have investigated the potential of tissue phantoms fabricated with thermosoftening- and photopolymerization-based three-dimensional (3D) printers for use in evaluation of biophotonic imaging systems. The optical properties of printed polymer samples were measured and compared to biological tissues. Phantoms with subsurface channels as small as 0.2 mm in diameter were fabricated and imaged with microscopy, x-ray microtomography, and optical coherence tomography to characterize morphology. These phantoms were then implemented to evaluate the penetration depth of a hyperspectral reflectance imaging system used in conjunction with a near-infrared contrast agent. Results indicated that 3D printing may provide a suitable platform for performance testing in biophotonics, although subsurface imaging is critical to mitigate printer-to-printer variability in matrix homogeneity and feature microstructure.</description><subject>Biological</subject><subject>Biomimetic Materials - chemical synthesis</subject><subject>Channels</subject><subject>Contrast agents</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Homogeneity</subject><subject>Imaging</subject><subject>Phantoms, Imaging</subject><subject>Polymers - chemistry</subject><subject>Printing, Three-Dimensional - instrumentation</subject><subject>Reflectance</subject><subject>Three dimensional</subject><subject>Three dimensional printing</subject><subject>Tomography - instrumentation</subject><issn>0146-9592</issn><issn>1539-4794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0DtPwzAYhWELgWgpbMwoIwMpn-_1iKpykSJ1KXPkOF9aoyQOcTLw7wlqYWU6y6MzvITcUlhSrsTjNltyswTgQOGMzKnkJhXaiHMyBypUaqRhM3IV4wcAKM35JZkxYfSKKZiTze7QI6alb7CNPrS2Trret4Nv90moksHHOGLSHWw7hCYmVeiTwofuEIbQepf4xu4nek0uKltHvDntgrw_b3br1zTbvrytn7LUcSaG1FHNoZRGrZxlyihwBRXolLQFKnQOoSicLVEKanHFqJOgtWOuAq5oqSq-IPfH364PnyPGIW98dFjXtsUwxpzqKQKVmrP_qRSMGS2YmujDkbo-xNhjlU8JGtt_5RTyn8b5Nsu5yY-NJ353eh6LBss__BuVfwOWFHcX</recordid><startdate>20140515</startdate><enddate>20140515</enddate><creator>Wang, Jianting</creator><creator>Coburn, James</creator><creator>Liang, Chia-Pin</creator><creator>Woolsey, Nicholas</creator><creator>Ramella-Roman, Jessica C</creator><creator>Chen, Yu</creator><creator>Pfefer, T Joshua</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140515</creationdate><title>Three-dimensional printing of tissue phantoms for biophotonic imaging</title><author>Wang, Jianting ; Coburn, James ; Liang, Chia-Pin ; Woolsey, Nicholas ; Ramella-Roman, Jessica C ; Chen, Yu ; Pfefer, T Joshua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-c1730d5968ca26960cb14ec65abe6ecce0bbcade541ae821c5077c2cf0361d6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biological</topic><topic>Biomimetic Materials - chemical synthesis</topic><topic>Channels</topic><topic>Contrast agents</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Homogeneity</topic><topic>Imaging</topic><topic>Phantoms, Imaging</topic><topic>Polymers - chemistry</topic><topic>Printing, Three-Dimensional - instrumentation</topic><topic>Reflectance</topic><topic>Three dimensional</topic><topic>Three dimensional printing</topic><topic>Tomography - instrumentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jianting</creatorcontrib><creatorcontrib>Coburn, James</creatorcontrib><creatorcontrib>Liang, Chia-Pin</creatorcontrib><creatorcontrib>Woolsey, Nicholas</creatorcontrib><creatorcontrib>Ramella-Roman, Jessica C</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Pfefer, T Joshua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jianting</au><au>Coburn, James</au><au>Liang, Chia-Pin</au><au>Woolsey, Nicholas</au><au>Ramella-Roman, Jessica C</au><au>Chen, Yu</au><au>Pfefer, T Joshua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional printing of tissue phantoms for biophotonic imaging</atitle><jtitle>Optics letters</jtitle><addtitle>Opt Lett</addtitle><date>2014-05-15</date><risdate>2014</risdate><volume>39</volume><issue>10</issue><spage>3010</spage><epage>3013</epage><pages>3010-3013</pages><issn>0146-9592</issn><eissn>1539-4794</eissn><abstract>We have investigated the potential of tissue phantoms fabricated with thermosoftening- and photopolymerization-based three-dimensional (3D) printers for use in evaluation of biophotonic imaging systems. The optical properties of printed polymer samples were measured and compared to biological tissues. Phantoms with subsurface channels as small as 0.2 mm in diameter were fabricated and imaged with microscopy, x-ray microtomography, and optical coherence tomography to characterize morphology. These phantoms were then implemented to evaluate the penetration depth of a hyperspectral reflectance imaging system used in conjunction with a near-infrared contrast agent. Results indicated that 3D printing may provide a suitable platform for performance testing in biophotonics, although subsurface imaging is critical to mitigate printer-to-printer variability in matrix homogeneity and feature microstructure.</abstract><cop>United States</cop><pmid>24978260</pmid><doi>10.1364/OL.39.003010</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0146-9592 |
ispartof | Optics letters, 2014-05, Vol.39 (10), p.3010-3013 |
issn | 0146-9592 1539-4794 |
language | eng |
recordid | cdi_proquest_miscellaneous_1701015732 |
source | MEDLINE; Optica Publishing Group Journals |
subjects | Biological Biomimetic Materials - chemical synthesis Channels Contrast agents Equipment Design Equipment Failure Analysis Homogeneity Imaging Phantoms, Imaging Polymers - chemistry Printing, Three-Dimensional - instrumentation Reflectance Three dimensional Three dimensional printing Tomography - instrumentation |
title | Three-dimensional printing of tissue phantoms for biophotonic imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A03%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20printing%20of%20tissue%20phantoms%20for%20biophotonic%20imaging&rft.jtitle=Optics%20letters&rft.au=Wang,%20Jianting&rft.date=2014-05-15&rft.volume=39&rft.issue=10&rft.spage=3010&rft.epage=3013&rft.pages=3010-3013&rft.issn=0146-9592&rft.eissn=1539-4794&rft_id=info:doi/10.1364/OL.39.003010&rft_dat=%3Cproquest_cross%3E1542297426%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1542297426&rft_id=info:pmid/24978260&rfr_iscdi=true |