Three-dimensional printing of tissue phantoms for biophotonic imaging

We have investigated the potential of tissue phantoms fabricated with thermosoftening- and photopolymerization-based three-dimensional (3D) printers for use in evaluation of biophotonic imaging systems. The optical properties of printed polymer samples were measured and compared to biological tissue...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters 2014-05, Vol.39 (10), p.3010-3013
Hauptverfasser: Wang, Jianting, Coburn, James, Liang, Chia-Pin, Woolsey, Nicholas, Ramella-Roman, Jessica C, Chen, Yu, Pfefer, T Joshua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3013
container_issue 10
container_start_page 3010
container_title Optics letters
container_volume 39
creator Wang, Jianting
Coburn, James
Liang, Chia-Pin
Woolsey, Nicholas
Ramella-Roman, Jessica C
Chen, Yu
Pfefer, T Joshua
description We have investigated the potential of tissue phantoms fabricated with thermosoftening- and photopolymerization-based three-dimensional (3D) printers for use in evaluation of biophotonic imaging systems. The optical properties of printed polymer samples were measured and compared to biological tissues. Phantoms with subsurface channels as small as 0.2 mm in diameter were fabricated and imaged with microscopy, x-ray microtomography, and optical coherence tomography to characterize morphology. These phantoms were then implemented to evaluate the penetration depth of a hyperspectral reflectance imaging system used in conjunction with a near-infrared contrast agent. Results indicated that 3D printing may provide a suitable platform for performance testing in biophotonics, although subsurface imaging is critical to mitigate printer-to-printer variability in matrix homogeneity and feature microstructure.
doi_str_mv 10.1364/OL.39.003010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701015732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1542297426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-c1730d5968ca26960cb14ec65abe6ecce0bbcade541ae821c5077c2cf0361d6f3</originalsourceid><addsrcrecordid>eNqF0DtPwzAYhWELgWgpbMwoIwMpn-_1iKpykSJ1KXPkOF9aoyQOcTLw7wlqYWU6y6MzvITcUlhSrsTjNltyswTgQOGMzKnkJhXaiHMyBypUaqRhM3IV4wcAKM35JZkxYfSKKZiTze7QI6alb7CNPrS2Trret4Nv90moksHHOGLSHWw7hCYmVeiTwofuEIbQepf4xu4nek0uKltHvDntgrw_b3br1zTbvrytn7LUcSaG1FHNoZRGrZxlyihwBRXolLQFKnQOoSicLVEKanHFqJOgtWOuAq5oqSq-IPfH364PnyPGIW98dFjXtsUwxpzqKQKVmrP_qRSMGS2YmujDkbo-xNhjlU8JGtt_5RTyn8b5Nsu5yY-NJ353eh6LBss__BuVfwOWFHcX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1542297426</pqid></control><display><type>article</type><title>Three-dimensional printing of tissue phantoms for biophotonic imaging</title><source>MEDLINE</source><source>Optica Publishing Group Journals</source><creator>Wang, Jianting ; Coburn, James ; Liang, Chia-Pin ; Woolsey, Nicholas ; Ramella-Roman, Jessica C ; Chen, Yu ; Pfefer, T Joshua</creator><creatorcontrib>Wang, Jianting ; Coburn, James ; Liang, Chia-Pin ; Woolsey, Nicholas ; Ramella-Roman, Jessica C ; Chen, Yu ; Pfefer, T Joshua</creatorcontrib><description>We have investigated the potential of tissue phantoms fabricated with thermosoftening- and photopolymerization-based three-dimensional (3D) printers for use in evaluation of biophotonic imaging systems. The optical properties of printed polymer samples were measured and compared to biological tissues. Phantoms with subsurface channels as small as 0.2 mm in diameter were fabricated and imaged with microscopy, x-ray microtomography, and optical coherence tomography to characterize morphology. These phantoms were then implemented to evaluate the penetration depth of a hyperspectral reflectance imaging system used in conjunction with a near-infrared contrast agent. Results indicated that 3D printing may provide a suitable platform for performance testing in biophotonics, although subsurface imaging is critical to mitigate printer-to-printer variability in matrix homogeneity and feature microstructure.</description><identifier>ISSN: 0146-9592</identifier><identifier>EISSN: 1539-4794</identifier><identifier>DOI: 10.1364/OL.39.003010</identifier><identifier>PMID: 24978260</identifier><language>eng</language><publisher>United States</publisher><subject>Biological ; Biomimetic Materials - chemical synthesis ; Channels ; Contrast agents ; Equipment Design ; Equipment Failure Analysis ; Homogeneity ; Imaging ; Phantoms, Imaging ; Polymers - chemistry ; Printing, Three-Dimensional - instrumentation ; Reflectance ; Three dimensional ; Three dimensional printing ; Tomography - instrumentation</subject><ispartof>Optics letters, 2014-05, Vol.39 (10), p.3010-3013</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-c1730d5968ca26960cb14ec65abe6ecce0bbcade541ae821c5077c2cf0361d6f3</citedby><cites>FETCH-LOGICAL-c324t-c1730d5968ca26960cb14ec65abe6ecce0bbcade541ae821c5077c2cf0361d6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24978260$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jianting</creatorcontrib><creatorcontrib>Coburn, James</creatorcontrib><creatorcontrib>Liang, Chia-Pin</creatorcontrib><creatorcontrib>Woolsey, Nicholas</creatorcontrib><creatorcontrib>Ramella-Roman, Jessica C</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Pfefer, T Joshua</creatorcontrib><title>Three-dimensional printing of tissue phantoms for biophotonic imaging</title><title>Optics letters</title><addtitle>Opt Lett</addtitle><description>We have investigated the potential of tissue phantoms fabricated with thermosoftening- and photopolymerization-based three-dimensional (3D) printers for use in evaluation of biophotonic imaging systems. The optical properties of printed polymer samples were measured and compared to biological tissues. Phantoms with subsurface channels as small as 0.2 mm in diameter were fabricated and imaged with microscopy, x-ray microtomography, and optical coherence tomography to characterize morphology. These phantoms were then implemented to evaluate the penetration depth of a hyperspectral reflectance imaging system used in conjunction with a near-infrared contrast agent. Results indicated that 3D printing may provide a suitable platform for performance testing in biophotonics, although subsurface imaging is critical to mitigate printer-to-printer variability in matrix homogeneity and feature microstructure.</description><subject>Biological</subject><subject>Biomimetic Materials - chemical synthesis</subject><subject>Channels</subject><subject>Contrast agents</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Homogeneity</subject><subject>Imaging</subject><subject>Phantoms, Imaging</subject><subject>Polymers - chemistry</subject><subject>Printing, Three-Dimensional - instrumentation</subject><subject>Reflectance</subject><subject>Three dimensional</subject><subject>Three dimensional printing</subject><subject>Tomography - instrumentation</subject><issn>0146-9592</issn><issn>1539-4794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0DtPwzAYhWELgWgpbMwoIwMpn-_1iKpykSJ1KXPkOF9aoyQOcTLw7wlqYWU6y6MzvITcUlhSrsTjNltyswTgQOGMzKnkJhXaiHMyBypUaqRhM3IV4wcAKM35JZkxYfSKKZiTze7QI6alb7CNPrS2Trret4Nv90moksHHOGLSHWw7hCYmVeiTwofuEIbQepf4xu4nek0uKltHvDntgrw_b3br1zTbvrytn7LUcSaG1FHNoZRGrZxlyihwBRXolLQFKnQOoSicLVEKanHFqJOgtWOuAq5oqSq-IPfH364PnyPGIW98dFjXtsUwxpzqKQKVmrP_qRSMGS2YmujDkbo-xNhjlU8JGtt_5RTyn8b5Nsu5yY-NJ353eh6LBss__BuVfwOWFHcX</recordid><startdate>20140515</startdate><enddate>20140515</enddate><creator>Wang, Jianting</creator><creator>Coburn, James</creator><creator>Liang, Chia-Pin</creator><creator>Woolsey, Nicholas</creator><creator>Ramella-Roman, Jessica C</creator><creator>Chen, Yu</creator><creator>Pfefer, T Joshua</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140515</creationdate><title>Three-dimensional printing of tissue phantoms for biophotonic imaging</title><author>Wang, Jianting ; Coburn, James ; Liang, Chia-Pin ; Woolsey, Nicholas ; Ramella-Roman, Jessica C ; Chen, Yu ; Pfefer, T Joshua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-c1730d5968ca26960cb14ec65abe6ecce0bbcade541ae821c5077c2cf0361d6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biological</topic><topic>Biomimetic Materials - chemical synthesis</topic><topic>Channels</topic><topic>Contrast agents</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Homogeneity</topic><topic>Imaging</topic><topic>Phantoms, Imaging</topic><topic>Polymers - chemistry</topic><topic>Printing, Three-Dimensional - instrumentation</topic><topic>Reflectance</topic><topic>Three dimensional</topic><topic>Three dimensional printing</topic><topic>Tomography - instrumentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jianting</creatorcontrib><creatorcontrib>Coburn, James</creatorcontrib><creatorcontrib>Liang, Chia-Pin</creatorcontrib><creatorcontrib>Woolsey, Nicholas</creatorcontrib><creatorcontrib>Ramella-Roman, Jessica C</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Pfefer, T Joshua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jianting</au><au>Coburn, James</au><au>Liang, Chia-Pin</au><au>Woolsey, Nicholas</au><au>Ramella-Roman, Jessica C</au><au>Chen, Yu</au><au>Pfefer, T Joshua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional printing of tissue phantoms for biophotonic imaging</atitle><jtitle>Optics letters</jtitle><addtitle>Opt Lett</addtitle><date>2014-05-15</date><risdate>2014</risdate><volume>39</volume><issue>10</issue><spage>3010</spage><epage>3013</epage><pages>3010-3013</pages><issn>0146-9592</issn><eissn>1539-4794</eissn><abstract>We have investigated the potential of tissue phantoms fabricated with thermosoftening- and photopolymerization-based three-dimensional (3D) printers for use in evaluation of biophotonic imaging systems. The optical properties of printed polymer samples were measured and compared to biological tissues. Phantoms with subsurface channels as small as 0.2 mm in diameter were fabricated and imaged with microscopy, x-ray microtomography, and optical coherence tomography to characterize morphology. These phantoms were then implemented to evaluate the penetration depth of a hyperspectral reflectance imaging system used in conjunction with a near-infrared contrast agent. Results indicated that 3D printing may provide a suitable platform for performance testing in biophotonics, although subsurface imaging is critical to mitigate printer-to-printer variability in matrix homogeneity and feature microstructure.</abstract><cop>United States</cop><pmid>24978260</pmid><doi>10.1364/OL.39.003010</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0146-9592
ispartof Optics letters, 2014-05, Vol.39 (10), p.3010-3013
issn 0146-9592
1539-4794
language eng
recordid cdi_proquest_miscellaneous_1701015732
source MEDLINE; Optica Publishing Group Journals
subjects Biological
Biomimetic Materials - chemical synthesis
Channels
Contrast agents
Equipment Design
Equipment Failure Analysis
Homogeneity
Imaging
Phantoms, Imaging
Polymers - chemistry
Printing, Three-Dimensional - instrumentation
Reflectance
Three dimensional
Three dimensional printing
Tomography - instrumentation
title Three-dimensional printing of tissue phantoms for biophotonic imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A03%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20printing%20of%20tissue%20phantoms%20for%20biophotonic%20imaging&rft.jtitle=Optics%20letters&rft.au=Wang,%20Jianting&rft.date=2014-05-15&rft.volume=39&rft.issue=10&rft.spage=3010&rft.epage=3013&rft.pages=3010-3013&rft.issn=0146-9592&rft.eissn=1539-4794&rft_id=info:doi/10.1364/OL.39.003010&rft_dat=%3Cproquest_cross%3E1542297426%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1542297426&rft_id=info:pmid/24978260&rfr_iscdi=true