Flat band states: Disorder and nonlinearity

We study the critical behavior of Anderson localized modes near intersecting flat and dispersive bands in the quasi-one-dimensional diamond ladder with weak diagonal disorder W. The localization length [xi] of the flat band states scales with disorder as [xi] ~ W super(- gamma ), with gamma approxim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2013-12, Vol.88 (22), Article 224203
Hauptverfasser: Leykam, Daniel, Flach, Sergej, Bahat-Treidel, Omri, Desyatnikov, Anton S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 22
container_start_page
container_title Physical review. B, Condensed matter and materials physics
container_volume 88
creator Leykam, Daniel
Flach, Sergej
Bahat-Treidel, Omri
Desyatnikov, Anton S.
description We study the critical behavior of Anderson localized modes near intersecting flat and dispersive bands in the quasi-one-dimensional diamond ladder with weak diagonal disorder W. The localization length [xi] of the flat band states scales with disorder as [xi] ~ W super(- gamma ), with gamma approximately 1.3, in contrast to the dispersive bands with gamma = 2. A small fraction of dispersive modes mixed with the flat band states is responsible for the unusual scaling. Anderson localization is therefore controlled by two different length scales. Nonlinearity can produce qualitatively different wave spreading regimes, from enhanced expansion to resonant tunneling and self-trapping.
doi_str_mv 10.1103/PhysRevB.88.224203
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701011587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701011587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-a5f81480e8aa270d2258cbf08658f5d465c200c8e5b9473e51fd7cebc9d5d9f23</originalsourceid><addsrcrecordid>eNo1kFFLwzAUhYMoOKd_wKc-CtJ5b9Kst77pdCoMFFHwLaTJDVa6diadsH_vxvTpHA4f5-ET4hxhggjq6uVzk17553ZCNJGykKAOxAi1hlwq_XG47VBRDijxWJyk9AWARVXIkbict3bIatv5LA124HSd3TWpj55jthu7vmubjm1shs2pOAq2TXz2l2PxPr9_mz3mi-eHp9nNIneq0kNudSAsCJislSV4KTW5OgBNNQXti6l2EsAR67oqSsUagy8d167y2ldBqrG42P-uYv-95jSYZZMct63tuF8ngyUgIGoqt6jcoy72KUUOZhWbpY0bg2B2Zsy_GUNk9mbUL2KmV6Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701011587</pqid></control><display><type>article</type><title>Flat band states: Disorder and nonlinearity</title><source>American Physical Society Journals</source><creator>Leykam, Daniel ; Flach, Sergej ; Bahat-Treidel, Omri ; Desyatnikov, Anton S.</creator><creatorcontrib>Leykam, Daniel ; Flach, Sergej ; Bahat-Treidel, Omri ; Desyatnikov, Anton S.</creatorcontrib><description>We study the critical behavior of Anderson localized modes near intersecting flat and dispersive bands in the quasi-one-dimensional diamond ladder with weak diagonal disorder W. The localization length [xi] of the flat band states scales with disorder as [xi] ~ W super(- gamma ), with gamma approximately 1.3, in contrast to the dispersive bands with gamma = 2. A small fraction of dispersive modes mixed with the flat band states is responsible for the unusual scaling. Anderson localization is therefore controlled by two different length scales. Nonlinearity can produce qualitatively different wave spreading regimes, from enhanced expansion to resonant tunneling and self-trapping.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.88.224203</identifier><language>eng</language><subject>Bands ; Condensed matter ; Diamonds ; Disorders ; Flats ; Ladders ; Nonlinearity ; Resonant tunneling ; Spreading</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2013-12, Vol.88 (22), Article 224203</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-a5f81480e8aa270d2258cbf08658f5d465c200c8e5b9473e51fd7cebc9d5d9f23</citedby><cites>FETCH-LOGICAL-c395t-a5f81480e8aa270d2258cbf08658f5d465c200c8e5b9473e51fd7cebc9d5d9f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2863,2864,27905,27906</link.rule.ids></links><search><creatorcontrib>Leykam, Daniel</creatorcontrib><creatorcontrib>Flach, Sergej</creatorcontrib><creatorcontrib>Bahat-Treidel, Omri</creatorcontrib><creatorcontrib>Desyatnikov, Anton S.</creatorcontrib><title>Flat band states: Disorder and nonlinearity</title><title>Physical review. B, Condensed matter and materials physics</title><description>We study the critical behavior of Anderson localized modes near intersecting flat and dispersive bands in the quasi-one-dimensional diamond ladder with weak diagonal disorder W. The localization length [xi] of the flat band states scales with disorder as [xi] ~ W super(- gamma ), with gamma approximately 1.3, in contrast to the dispersive bands with gamma = 2. A small fraction of dispersive modes mixed with the flat band states is responsible for the unusual scaling. Anderson localization is therefore controlled by two different length scales. Nonlinearity can produce qualitatively different wave spreading regimes, from enhanced expansion to resonant tunneling and self-trapping.</description><subject>Bands</subject><subject>Condensed matter</subject><subject>Diamonds</subject><subject>Disorders</subject><subject>Flats</subject><subject>Ladders</subject><subject>Nonlinearity</subject><subject>Resonant tunneling</subject><subject>Spreading</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo1kFFLwzAUhYMoOKd_wKc-CtJ5b9Kst77pdCoMFFHwLaTJDVa6diadsH_vxvTpHA4f5-ET4hxhggjq6uVzk17553ZCNJGykKAOxAi1hlwq_XG47VBRDijxWJyk9AWARVXIkbict3bIatv5LA124HSd3TWpj55jthu7vmubjm1shs2pOAq2TXz2l2PxPr9_mz3mi-eHp9nNIneq0kNudSAsCJislSV4KTW5OgBNNQXti6l2EsAR67oqSsUagy8d167y2ldBqrG42P-uYv-95jSYZZMct63tuF8ngyUgIGoqt6jcoy72KUUOZhWbpY0bg2B2Zsy_GUNk9mbUL2KmV6Y</recordid><startdate>20131219</startdate><enddate>20131219</enddate><creator>Leykam, Daniel</creator><creator>Flach, Sergej</creator><creator>Bahat-Treidel, Omri</creator><creator>Desyatnikov, Anton S.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20131219</creationdate><title>Flat band states: Disorder and nonlinearity</title><author>Leykam, Daniel ; Flach, Sergej ; Bahat-Treidel, Omri ; Desyatnikov, Anton S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-a5f81480e8aa270d2258cbf08658f5d465c200c8e5b9473e51fd7cebc9d5d9f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bands</topic><topic>Condensed matter</topic><topic>Diamonds</topic><topic>Disorders</topic><topic>Flats</topic><topic>Ladders</topic><topic>Nonlinearity</topic><topic>Resonant tunneling</topic><topic>Spreading</topic><toplevel>online_resources</toplevel><creatorcontrib>Leykam, Daniel</creatorcontrib><creatorcontrib>Flach, Sergej</creatorcontrib><creatorcontrib>Bahat-Treidel, Omri</creatorcontrib><creatorcontrib>Desyatnikov, Anton S.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leykam, Daniel</au><au>Flach, Sergej</au><au>Bahat-Treidel, Omri</au><au>Desyatnikov, Anton S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flat band states: Disorder and nonlinearity</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2013-12-19</date><risdate>2013</risdate><volume>88</volume><issue>22</issue><artnum>224203</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>We study the critical behavior of Anderson localized modes near intersecting flat and dispersive bands in the quasi-one-dimensional diamond ladder with weak diagonal disorder W. The localization length [xi] of the flat band states scales with disorder as [xi] ~ W super(- gamma ), with gamma approximately 1.3, in contrast to the dispersive bands with gamma = 2. A small fraction of dispersive modes mixed with the flat band states is responsible for the unusual scaling. Anderson localization is therefore controlled by two different length scales. Nonlinearity can produce qualitatively different wave spreading regimes, from enhanced expansion to resonant tunneling and self-trapping.</abstract><doi>10.1103/PhysRevB.88.224203</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1098-0121
ispartof Physical review. B, Condensed matter and materials physics, 2013-12, Vol.88 (22), Article 224203
issn 1098-0121
1550-235X
language eng
recordid cdi_proquest_miscellaneous_1701011587
source American Physical Society Journals
subjects Bands
Condensed matter
Diamonds
Disorders
Flats
Ladders
Nonlinearity
Resonant tunneling
Spreading
title Flat band states: Disorder and nonlinearity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T22%3A01%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flat%20band%20states:%20Disorder%20and%20nonlinearity&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Leykam,%20Daniel&rft.date=2013-12-19&rft.volume=88&rft.issue=22&rft.artnum=224203&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.88.224203&rft_dat=%3Cproquest_cross%3E1701011587%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701011587&rft_id=info:pmid/&rfr_iscdi=true