Thai Handwritten Character Recognition by Genetic Algorithm (THCRGA)

The objective of this research is to develop computer software that can recognize the Thai handwritten characters by using the genetic algorithm technique (THCRGA). The system consists of 5 main modules, which are: 1) image acquisition module, 2) image preprocessing module, 3) feature extraction mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Engineering and Technology 2011-04, Vol.3 (2), p.148-153
Hauptverfasser: Pornpanomchai, Chomtip, Wongsawangtham, Verachad, Jeungudomporn, Satheanpong, Chatsumpun, Nannaphat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 153
container_issue 2
container_start_page 148
container_title International Journal of Engineering and Technology
container_volume 3
creator Pornpanomchai, Chomtip
Wongsawangtham, Verachad
Jeungudomporn, Satheanpong
Chatsumpun, Nannaphat
description The objective of this research is to develop computer software that can recognize the Thai handwritten characters by using the genetic algorithm technique (THCRGA). The system consists of 5 main modules, which are: 1) image acquisition module, 2) image preprocessing module, 3) feature extraction module, 4) character recognition module, and 5) display result module. Each module has the following details. First, the image acquisition module collects an unknown input character from a user. Second, the input image is transformed into a suitable image for the feature extraction module. Third, the system extracts character features from the image. There are 3 main features of Thai characters which are stroke, loop and location of loop and stroke connection. Fourth, the extracted character information is kept in the form of bits string chromosome in a genetic algorithm. Finally, the system displays the best fitness chromosome for the recognition result. The experiment was conducted on more than 10,000 Thai handwritten characters by using 8,160 for training characters and 2,040 for testing characters. The precision of the system is around 88.24 percent, with recognition speed of 0.42 second per character. Dr. Chomtip Pornpanomchai is an Assistant Professor in the Faculty of Information and Communication Technology, Mahidol University, Member, IACSIT, Bangkok 10400, Thailand, e-mail: itcppahidol.ac.th,Tel:662-354-4333.Verachad Wongsawangtham, Satheanpong Jeungudomporn, and Nannaphat Chatsumpun are graduated from the Faculty of Information and Communication Technology, Mahidol University, Bangkok 10400, Thailand,e-mail:{u4988225,u4988055,u4988023}tudent.mahidol.ac.th, Tel:662-354-4333.
doi_str_mv 10.7763/IJET.2011.V3.214
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701007717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701007717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1547-d3c21af108877c09e1a514aef9f83a1cd0187746a2d85c2a09691d7dfd06a7653</originalsourceid><addsrcrecordid>eNqFkMFLwzAUxoMoOObuHnuch9b3krRpj6PObTIQRt01xCTdKl07kw7Zf7-WiVdP74P34-PjR8gjQiREwp5Xb_MiooAYbVlEkd-QEYqMhSnl_PYvs-SeTLz_AgBkHNMYR-Sl2KsqWKrG_Liq62wT5HvllO6sCzZWt7um6qq2CT7PwcI2tqt0MKt3bc_uD8G0WOabxezpgdyVqvZ28nvH5ON1XuTLcP2-WOWzdagx5iI0TFNUJUKaCqEhs6hi5MqWWZkyhdoA9g-eKGrSWFMFWZKhEaY0kCiRxGxMptfeo2u_T9Z38lB5betaNbY9eYkCEEAIFP-jMYWM90uGVrii2rXeO1vKo6sOyp0lghz0ykGvHPTKLZO9XnYBJ2tq9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520940885</pqid></control><display><type>article</type><title>Thai Handwritten Character Recognition by Genetic Algorithm (THCRGA)</title><source>Free E-Journal (出版社公開部分のみ)</source><creator>Pornpanomchai, Chomtip ; Wongsawangtham, Verachad ; Jeungudomporn, Satheanpong ; Chatsumpun, Nannaphat</creator><creatorcontrib>Pornpanomchai, Chomtip ; Wongsawangtham, Verachad ; Jeungudomporn, Satheanpong ; Chatsumpun, Nannaphat</creatorcontrib><description>The objective of this research is to develop computer software that can recognize the Thai handwritten characters by using the genetic algorithm technique (THCRGA). The system consists of 5 main modules, which are: 1) image acquisition module, 2) image preprocessing module, 3) feature extraction module, 4) character recognition module, and 5) display result module. Each module has the following details. First, the image acquisition module collects an unknown input character from a user. Second, the input image is transformed into a suitable image for the feature extraction module. Third, the system extracts character features from the image. There are 3 main features of Thai characters which are stroke, loop and location of loop and stroke connection. Fourth, the extracted character information is kept in the form of bits string chromosome in a genetic algorithm. Finally, the system displays the best fitness chromosome for the recognition result. The experiment was conducted on more than 10,000 Thai handwritten characters by using 8,160 for training characters and 2,040 for testing characters. The precision of the system is around 88.24 percent, with recognition speed of 0.42 second per character. Dr. Chomtip Pornpanomchai is an Assistant Professor in the Faculty of Information and Communication Technology, Mahidol University, Member, IACSIT, Bangkok 10400, Thailand, e-mail: itcppahidol.ac.th,Tel:662-354-4333.Verachad Wongsawangtham, Satheanpong Jeungudomporn, and Nannaphat Chatsumpun are graduated from the Faculty of Information and Communication Technology, Mahidol University, Bangkok 10400, Thailand,e-mail:{u4988225,u4988055,u4988023}tudent.mahidol.ac.th, Tel:662-354-4333.</description><identifier>ISSN: 1793-8236</identifier><identifier>EISSN: 1793-8244</identifier><identifier>DOI: 10.7763/IJET.2011.V3.214</identifier><language>eng</language><subject>Character recognition ; Computer programs ; Feature extraction ; Genetic algorithms ; Image acquisition ; Modules ; Recognition</subject><ispartof>International Journal of Engineering and Technology, 2011-04, Vol.3 (2), p.148-153</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1547-d3c21af108877c09e1a514aef9f83a1cd0187746a2d85c2a09691d7dfd06a7653</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pornpanomchai, Chomtip</creatorcontrib><creatorcontrib>Wongsawangtham, Verachad</creatorcontrib><creatorcontrib>Jeungudomporn, Satheanpong</creatorcontrib><creatorcontrib>Chatsumpun, Nannaphat</creatorcontrib><title>Thai Handwritten Character Recognition by Genetic Algorithm (THCRGA)</title><title>International Journal of Engineering and Technology</title><description>The objective of this research is to develop computer software that can recognize the Thai handwritten characters by using the genetic algorithm technique (THCRGA). The system consists of 5 main modules, which are: 1) image acquisition module, 2) image preprocessing module, 3) feature extraction module, 4) character recognition module, and 5) display result module. Each module has the following details. First, the image acquisition module collects an unknown input character from a user. Second, the input image is transformed into a suitable image for the feature extraction module. Third, the system extracts character features from the image. There are 3 main features of Thai characters which are stroke, loop and location of loop and stroke connection. Fourth, the extracted character information is kept in the form of bits string chromosome in a genetic algorithm. Finally, the system displays the best fitness chromosome for the recognition result. The experiment was conducted on more than 10,000 Thai handwritten characters by using 8,160 for training characters and 2,040 for testing characters. The precision of the system is around 88.24 percent, with recognition speed of 0.42 second per character. Dr. Chomtip Pornpanomchai is an Assistant Professor in the Faculty of Information and Communication Technology, Mahidol University, Member, IACSIT, Bangkok 10400, Thailand, e-mail: itcppahidol.ac.th,Tel:662-354-4333.Verachad Wongsawangtham, Satheanpong Jeungudomporn, and Nannaphat Chatsumpun are graduated from the Faculty of Information and Communication Technology, Mahidol University, Bangkok 10400, Thailand,e-mail:{u4988225,u4988055,u4988023}tudent.mahidol.ac.th, Tel:662-354-4333.</description><subject>Character recognition</subject><subject>Computer programs</subject><subject>Feature extraction</subject><subject>Genetic algorithms</subject><subject>Image acquisition</subject><subject>Modules</subject><subject>Recognition</subject><issn>1793-8236</issn><issn>1793-8244</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkMFLwzAUxoMoOObuHnuch9b3krRpj6PObTIQRt01xCTdKl07kw7Zf7-WiVdP74P34-PjR8gjQiREwp5Xb_MiooAYbVlEkd-QEYqMhSnl_PYvs-SeTLz_AgBkHNMYR-Sl2KsqWKrG_Liq62wT5HvllO6sCzZWt7um6qq2CT7PwcI2tqt0MKt3bc_uD8G0WOabxezpgdyVqvZ28nvH5ON1XuTLcP2-WOWzdagx5iI0TFNUJUKaCqEhs6hi5MqWWZkyhdoA9g-eKGrSWFMFWZKhEaY0kCiRxGxMptfeo2u_T9Z38lB5betaNbY9eYkCEEAIFP-jMYWM90uGVrii2rXeO1vKo6sOyp0lghz0ykGvHPTKLZO9XnYBJ2tq9g</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Pornpanomchai, Chomtip</creator><creator>Wongsawangtham, Verachad</creator><creator>Jeungudomporn, Satheanpong</creator><creator>Chatsumpun, Nannaphat</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110401</creationdate><title>Thai Handwritten Character Recognition by Genetic Algorithm (THCRGA)</title><author>Pornpanomchai, Chomtip ; Wongsawangtham, Verachad ; Jeungudomporn, Satheanpong ; Chatsumpun, Nannaphat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1547-d3c21af108877c09e1a514aef9f83a1cd0187746a2d85c2a09691d7dfd06a7653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Character recognition</topic><topic>Computer programs</topic><topic>Feature extraction</topic><topic>Genetic algorithms</topic><topic>Image acquisition</topic><topic>Modules</topic><topic>Recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Pornpanomchai, Chomtip</creatorcontrib><creatorcontrib>Wongsawangtham, Verachad</creatorcontrib><creatorcontrib>Jeungudomporn, Satheanpong</creatorcontrib><creatorcontrib>Chatsumpun, Nannaphat</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International Journal of Engineering and Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pornpanomchai, Chomtip</au><au>Wongsawangtham, Verachad</au><au>Jeungudomporn, Satheanpong</au><au>Chatsumpun, Nannaphat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thai Handwritten Character Recognition by Genetic Algorithm (THCRGA)</atitle><jtitle>International Journal of Engineering and Technology</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>3</volume><issue>2</issue><spage>148</spage><epage>153</epage><pages>148-153</pages><issn>1793-8236</issn><eissn>1793-8244</eissn><abstract>The objective of this research is to develop computer software that can recognize the Thai handwritten characters by using the genetic algorithm technique (THCRGA). The system consists of 5 main modules, which are: 1) image acquisition module, 2) image preprocessing module, 3) feature extraction module, 4) character recognition module, and 5) display result module. Each module has the following details. First, the image acquisition module collects an unknown input character from a user. Second, the input image is transformed into a suitable image for the feature extraction module. Third, the system extracts character features from the image. There are 3 main features of Thai characters which are stroke, loop and location of loop and stroke connection. Fourth, the extracted character information is kept in the form of bits string chromosome in a genetic algorithm. Finally, the system displays the best fitness chromosome for the recognition result. The experiment was conducted on more than 10,000 Thai handwritten characters by using 8,160 for training characters and 2,040 for testing characters. The precision of the system is around 88.24 percent, with recognition speed of 0.42 second per character. Dr. Chomtip Pornpanomchai is an Assistant Professor in the Faculty of Information and Communication Technology, Mahidol University, Member, IACSIT, Bangkok 10400, Thailand, e-mail: itcppahidol.ac.th,Tel:662-354-4333.Verachad Wongsawangtham, Satheanpong Jeungudomporn, and Nannaphat Chatsumpun are graduated from the Faculty of Information and Communication Technology, Mahidol University, Bangkok 10400, Thailand,e-mail:{u4988225,u4988055,u4988023}tudent.mahidol.ac.th, Tel:662-354-4333.</abstract><doi>10.7763/IJET.2011.V3.214</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1793-8236
ispartof International Journal of Engineering and Technology, 2011-04, Vol.3 (2), p.148-153
issn 1793-8236
1793-8244
language eng
recordid cdi_proquest_miscellaneous_1701007717
source Free E-Journal (出版社公開部分のみ)
subjects Character recognition
Computer programs
Feature extraction
Genetic algorithms
Image acquisition
Modules
Recognition
title Thai Handwritten Character Recognition by Genetic Algorithm (THCRGA)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thai%20Handwritten%20Character%20Recognition%20by%20Genetic%20Algorithm%20(THCRGA)&rft.jtitle=International%20Journal%20of%20Engineering%20and%20Technology&rft.au=Pornpanomchai,%20Chomtip&rft.date=2011-04-01&rft.volume=3&rft.issue=2&rft.spage=148&rft.epage=153&rft.pages=148-153&rft.issn=1793-8236&rft.eissn=1793-8244&rft_id=info:doi/10.7763/IJET.2011.V3.214&rft_dat=%3Cproquest_cross%3E1701007717%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1520940885&rft_id=info:pmid/&rfr_iscdi=true