First-principles analysis of a homochiral cycloidal magnetic structure in a monolayer Cr on W(110)
The magnetic structure of a Cr monolayer on a W(110) substrate is investigated by means of first-principles calculations based on noncollinear spin density functional theory (DFT). As magnetic ground state we find a long-period homochiral left-rotating spin spiral on top of an atomicscale antiferrom...
Gespeichert in:
Veröffentlicht in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2014-09, Vol.90 (11), Article 115427 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The magnetic structure of a Cr monolayer on a W(110) substrate is investigated by means of first-principles calculations based on noncollinear spin density functional theory (DFT). As magnetic ground state we find a long-period homochiral left-rotating spin spiral on top of an atomicscale antiferromagnetic order of nearest-neighbor atoms. The rotation angle of the magnetic moment changes inhomogeneously from atom to atom across the spiral. We predict a propagation direction along the crystallographic [001] direction with a period length of |[lambda]| = 14.3 nm, which is in excellent agreement with a modulation of the local antiferromagnetic contrast observed in spin-polarized scanning tunneling microscope experiments by Santos et al. [New J. Phys. 10, 013005 (2008) (http://dx.doi.org/10.1088/13672630/10/1/013005)]. We identify the Dzyaloshinskii-Moriya interaction as the origin of the homochiral magnetic structure, competing with the Heisenberg-type exchange interaction and magnetocrystalline anisotropy energy. From DFT calculations we extract parameters for a micromagnetic model and thereby determine a considerable inhomogeneity of the spin spiral, increasing the period length by 6% compared to homogeneous spin spirals. The results are compared to the behavior of a Mn and Fe monolayer and Fe double layer on a W(110) substrate. |
---|---|
ISSN: | 1098-0121 1550-235X |
DOI: | 10.1103/PhysRevB.90.115427 |