A case study of muscle dysmorphia disorder diagnostics

► A set of indicators which describe a psychological profile of a person with MD and the degree of the disease was stated. ► Several models including regression models, decision tree and rule learners were calculated. ► The models enable to identify the most influential factors which can be used for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2013-08, Vol.40 (10), p.4226-4231
Hauptverfasser: Sokolova, Marina V., González-Martí, Irene, Contreras Jordán, Onofre Ricardo, Fernández Bustos, Juan Gregorio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4231
container_issue 10
container_start_page 4226
container_title Expert systems with applications
container_volume 40
creator Sokolova, Marina V.
González-Martí, Irene
Contreras Jordán, Onofre Ricardo
Fernández Bustos, Juan Gregorio
description ► A set of indicators which describe a psychological profile of a person with MD and the degree of the disease was stated. ► Several models including regression models, decision tree and rule learners were calculated. ► The models enable to identify the most influential factors which can be used for diagnostic purpose. Muscle dysmorphia is a mental disorder which mainly affects young people and which may have physiological consequences. Though the nature of muscle dysmorphia has been studied, there is still a lack of scientific works explaining the hidden patterns and creation of models for this disorder. With this aim, using regression techniques, rule learners and decision tree classifiers, several models which can be useful for diagnosis and prevention of this disorder, has been obtained.
doi_str_mv 10.1016/j.eswa.2013.01.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701003692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417413000365</els_id><sourcerecordid>1701003692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-c7158a5a950934df93b08b5070b9b9df334bc8f9fd3ff2f47d054a76683e54363</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EEqXwB5gysiRcx44dSyxVxUuqxAKz5fgBrpKm-Cag_nsSlRmme4fzHel8hFxTKChQcbstPH6bogTKCqAFlOyELGgtWS6kYqdkAaqSOaeSn5MLxC0AlQByQcQqswZ9hsPoDlkfsm5E2_rMHbDr0_4jmsxF7JPzaXrM-67HIVq8JGfBtOivfu-SvD3cv66f8s3L4_N6tcktE2LIraRVbSqjKlCMu6BYA3VTgYRGNcoFxnhj66CCYyGUgUsHFTdSiJr5ijPBluTm2LtP_efocdBdROvb1ux8P6KeVlAAJlT5f5RxxSte13NreYza1CMmH_Q-xc6kg6agZ596q2efevapgerJ5wTdHSE_7f2KPmm00e-sdzF5O2jXx7_wH3TJfR0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349454886</pqid></control><display><type>article</type><title>A case study of muscle dysmorphia disorder diagnostics</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Sokolova, Marina V. ; González-Martí, Irene ; Contreras Jordán, Onofre Ricardo ; Fernández Bustos, Juan Gregorio</creator><creatorcontrib>Sokolova, Marina V. ; González-Martí, Irene ; Contreras Jordán, Onofre Ricardo ; Fernández Bustos, Juan Gregorio</creatorcontrib><description>► A set of indicators which describe a psychological profile of a person with MD and the degree of the disease was stated. ► Several models including regression models, decision tree and rule learners were calculated. ► The models enable to identify the most influential factors which can be used for diagnostic purpose. Muscle dysmorphia is a mental disorder which mainly affects young people and which may have physiological consequences. Though the nature of muscle dysmorphia has been studied, there is still a lack of scientific works explaining the hidden patterns and creation of models for this disorder. With this aim, using regression techniques, rule learners and decision tree classifiers, several models which can be useful for diagnosis and prevention of this disorder, has been obtained.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2013.01.023</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Classifiers ; Decision tree ; Decision trees ; Diagnosis ; Disorders ; Expert systems ; Modeling ; Muscle dysmorphia ; Muscles ; Regression ; Young people</subject><ispartof>Expert systems with applications, 2013-08, Vol.40 (10), p.4226-4231</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-c7158a5a950934df93b08b5070b9b9df334bc8f9fd3ff2f47d054a76683e54363</citedby><cites>FETCH-LOGICAL-c366t-c7158a5a950934df93b08b5070b9b9df334bc8f9fd3ff2f47d054a76683e54363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2013.01.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Sokolova, Marina V.</creatorcontrib><creatorcontrib>González-Martí, Irene</creatorcontrib><creatorcontrib>Contreras Jordán, Onofre Ricardo</creatorcontrib><creatorcontrib>Fernández Bustos, Juan Gregorio</creatorcontrib><title>A case study of muscle dysmorphia disorder diagnostics</title><title>Expert systems with applications</title><description>► A set of indicators which describe a psychological profile of a person with MD and the degree of the disease was stated. ► Several models including regression models, decision tree and rule learners were calculated. ► The models enable to identify the most influential factors which can be used for diagnostic purpose. Muscle dysmorphia is a mental disorder which mainly affects young people and which may have physiological consequences. Though the nature of muscle dysmorphia has been studied, there is still a lack of scientific works explaining the hidden patterns and creation of models for this disorder. With this aim, using regression techniques, rule learners and decision tree classifiers, several models which can be useful for diagnosis and prevention of this disorder, has been obtained.</description><subject>Classifiers</subject><subject>Decision tree</subject><subject>Decision trees</subject><subject>Diagnosis</subject><subject>Disorders</subject><subject>Expert systems</subject><subject>Modeling</subject><subject>Muscle dysmorphia</subject><subject>Muscles</subject><subject>Regression</subject><subject>Young people</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAUhS0EEqXwB5gysiRcx44dSyxVxUuqxAKz5fgBrpKm-Cag_nsSlRmme4fzHel8hFxTKChQcbstPH6bogTKCqAFlOyELGgtWS6kYqdkAaqSOaeSn5MLxC0AlQByQcQqswZ9hsPoDlkfsm5E2_rMHbDr0_4jmsxF7JPzaXrM-67HIVq8JGfBtOivfu-SvD3cv66f8s3L4_N6tcktE2LIraRVbSqjKlCMu6BYA3VTgYRGNcoFxnhj66CCYyGUgUsHFTdSiJr5ijPBluTm2LtP_efocdBdROvb1ux8P6KeVlAAJlT5f5RxxSte13NreYza1CMmH_Q-xc6kg6agZ596q2efevapgerJ5wTdHSE_7f2KPmm00e-sdzF5O2jXx7_wH3TJfR0</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Sokolova, Marina V.</creator><creator>González-Martí, Irene</creator><creator>Contreras Jordán, Onofre Ricardo</creator><creator>Fernández Bustos, Juan Gregorio</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201308</creationdate><title>A case study of muscle dysmorphia disorder diagnostics</title><author>Sokolova, Marina V. ; González-Martí, Irene ; Contreras Jordán, Onofre Ricardo ; Fernández Bustos, Juan Gregorio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-c7158a5a950934df93b08b5070b9b9df334bc8f9fd3ff2f47d054a76683e54363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Classifiers</topic><topic>Decision tree</topic><topic>Decision trees</topic><topic>Diagnosis</topic><topic>Disorders</topic><topic>Expert systems</topic><topic>Modeling</topic><topic>Muscle dysmorphia</topic><topic>Muscles</topic><topic>Regression</topic><topic>Young people</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sokolova, Marina V.</creatorcontrib><creatorcontrib>González-Martí, Irene</creatorcontrib><creatorcontrib>Contreras Jordán, Onofre Ricardo</creatorcontrib><creatorcontrib>Fernández Bustos, Juan Gregorio</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sokolova, Marina V.</au><au>González-Martí, Irene</au><au>Contreras Jordán, Onofre Ricardo</au><au>Fernández Bustos, Juan Gregorio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A case study of muscle dysmorphia disorder diagnostics</atitle><jtitle>Expert systems with applications</jtitle><date>2013-08</date><risdate>2013</risdate><volume>40</volume><issue>10</issue><spage>4226</spage><epage>4231</epage><pages>4226-4231</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>► A set of indicators which describe a psychological profile of a person with MD and the degree of the disease was stated. ► Several models including regression models, decision tree and rule learners were calculated. ► The models enable to identify the most influential factors which can be used for diagnostic purpose. Muscle dysmorphia is a mental disorder which mainly affects young people and which may have physiological consequences. Though the nature of muscle dysmorphia has been studied, there is still a lack of scientific works explaining the hidden patterns and creation of models for this disorder. With this aim, using regression techniques, rule learners and decision tree classifiers, several models which can be useful for diagnosis and prevention of this disorder, has been obtained.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2013.01.023</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2013-08, Vol.40 (10), p.4226-4231
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_miscellaneous_1701003692
source Elsevier ScienceDirect Journals Complete
subjects Classifiers
Decision tree
Decision trees
Diagnosis
Disorders
Expert systems
Modeling
Muscle dysmorphia
Muscles
Regression
Young people
title A case study of muscle dysmorphia disorder diagnostics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A08%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20case%20study%20of%20muscle%20dysmorphia%20disorder%20diagnostics&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Sokolova,%20Marina%20V.&rft.date=2013-08&rft.volume=40&rft.issue=10&rft.spage=4226&rft.epage=4231&rft.pages=4226-4231&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2013.01.023&rft_dat=%3Cproquest_cross%3E1701003692%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1349454886&rft_id=info:pmid/&rft_els_id=S0957417413000365&rfr_iscdi=true