User Customizable Privacy-Preserving Personalized Web Search
Personalized web search (PWS) has demonstrated its effectiveness in improving the quality of various search services on the Internet. However, evidences show that users' reluctance to disclose their private information during search has become a major barrier for the wide proliferation of PWS....
Gespeichert in:
Veröffentlicht in: | International journal of computer science and information security 2015-04, Vol.13 (4), p.6-6 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | 4 |
container_start_page | 6 |
container_title | International journal of computer science and information security |
container_volume | 13 |
creator | Akhila, G S Prasanth, R S |
description | Personalized web search (PWS) has demonstrated its effectiveness in improving the quality of various search services on the Internet. However, evidences show that users' reluctance to disclose their private information during search has become a major barrier for the wide proliferation of PWS. This paper proposes a PWS framework called UPS that can adaptively generalize profiles by queries while respecting user specified privacy requirements. Present an algorithm, namely GreedylL, for runtime generalization. The experimental results show that GreedyIL performs efficiently. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701002681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701002681</sourcerecordid><originalsourceid>FETCH-LOGICAL-p611-f9a6cd9277580fee24e970fdbaf6631b7db459ebc64d2624bdc3bf93a39cac3a3</originalsourceid><addsrcrecordid>eNpdjktLAzEYRYMgtNT-h0A3bgbyzgTcyOALCh2w4rLk8UWnTGdq0inYX29AV97NWdzD5V6hOTVCV1ISMkPLnPekhFMhqZyju7cMCTdTPo2H7mJdD7hN3dn676pNULpzN3zgFlIeB9t3Fwj4HRx-BZv85w26jrbPsPzjAm0fH7bNc7XePL009-vqqCitorHKB8O0ljWJAEyA0SQGZ6NSnDodnJAGnFciMMWEC567aLjlxltfsEC3v7PHNH5NkE-7Q5c99L0dYJzyjmpCCWGqpkVd_VP345TK82KpminFiBT8B05kUgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1682662054</pqid></control><display><type>article</type><title>User Customizable Privacy-Preserving Personalized Web Search</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Akhila, G S ; Prasanth, R S</creator><creatorcontrib>Akhila, G S ; Prasanth, R S</creatorcontrib><description>Personalized web search (PWS) has demonstrated its effectiveness in improving the quality of various search services on the Internet. However, evidences show that users' reluctance to disclose their private information during search has become a major barrier for the wide proliferation of PWS. This paper proposes a PWS framework called UPS that can adaptively generalize profiles by queries while respecting user specified privacy requirements. Present an algorithm, namely GreedylL, for runtime generalization. The experimental results show that GreedyIL performs efficiently.</description><identifier>EISSN: 1947-5500</identifier><language>eng</language><publisher>Pittsburgh: L J S Publishing</publisher><subject>Algorithms ; Computer information security ; Customizing ; Internet ; Methods ; Personal information ; Personalized ; Queries ; Reluctance ; Retrieval performance measures ; Search engines ; Searching ; Service introduction ; UPS ; User profiles</subject><ispartof>International journal of computer science and information security, 2015-04, Vol.13 (4), p.6-6</ispartof><rights>Copyright L J S Publishing Apr 2015</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Akhila, G S</creatorcontrib><creatorcontrib>Prasanth, R S</creatorcontrib><title>User Customizable Privacy-Preserving Personalized Web Search</title><title>International journal of computer science and information security</title><description>Personalized web search (PWS) has demonstrated its effectiveness in improving the quality of various search services on the Internet. However, evidences show that users' reluctance to disclose their private information during search has become a major barrier for the wide proliferation of PWS. This paper proposes a PWS framework called UPS that can adaptively generalize profiles by queries while respecting user specified privacy requirements. Present an algorithm, namely GreedylL, for runtime generalization. The experimental results show that GreedyIL performs efficiently.</description><subject>Algorithms</subject><subject>Computer information security</subject><subject>Customizing</subject><subject>Internet</subject><subject>Methods</subject><subject>Personal information</subject><subject>Personalized</subject><subject>Queries</subject><subject>Reluctance</subject><subject>Retrieval performance measures</subject><subject>Search engines</subject><subject>Searching</subject><subject>Service introduction</subject><subject>UPS</subject><subject>User profiles</subject><issn>1947-5500</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdjktLAzEYRYMgtNT-h0A3bgbyzgTcyOALCh2w4rLk8UWnTGdq0inYX29AV97NWdzD5V6hOTVCV1ISMkPLnPekhFMhqZyju7cMCTdTPo2H7mJdD7hN3dn676pNULpzN3zgFlIeB9t3Fwj4HRx-BZv85w26jrbPsPzjAm0fH7bNc7XePL009-vqqCitorHKB8O0ljWJAEyA0SQGZ6NSnDodnJAGnFciMMWEC567aLjlxltfsEC3v7PHNH5NkE-7Q5c99L0dYJzyjmpCCWGqpkVd_VP345TK82KpminFiBT8B05kUgQ</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Akhila, G S</creator><creator>Prasanth, R S</creator><general>L J S Publishing</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150401</creationdate><title>User Customizable Privacy-Preserving Personalized Web Search</title><author>Akhila, G S ; Prasanth, R S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p611-f9a6cd9277580fee24e970fdbaf6631b7db459ebc64d2624bdc3bf93a39cac3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Computer information security</topic><topic>Customizing</topic><topic>Internet</topic><topic>Methods</topic><topic>Personal information</topic><topic>Personalized</topic><topic>Queries</topic><topic>Reluctance</topic><topic>Retrieval performance measures</topic><topic>Search engines</topic><topic>Searching</topic><topic>Service introduction</topic><topic>UPS</topic><topic>User profiles</topic><toplevel>online_resources</toplevel><creatorcontrib>Akhila, G S</creatorcontrib><creatorcontrib>Prasanth, R S</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer science and information security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akhila, G S</au><au>Prasanth, R S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>User Customizable Privacy-Preserving Personalized Web Search</atitle><jtitle>International journal of computer science and information security</jtitle><date>2015-04-01</date><risdate>2015</risdate><volume>13</volume><issue>4</issue><spage>6</spage><epage>6</epage><pages>6-6</pages><eissn>1947-5500</eissn><abstract>Personalized web search (PWS) has demonstrated its effectiveness in improving the quality of various search services on the Internet. However, evidences show that users' reluctance to disclose their private information during search has become a major barrier for the wide proliferation of PWS. This paper proposes a PWS framework called UPS that can adaptively generalize profiles by queries while respecting user specified privacy requirements. Present an algorithm, namely GreedylL, for runtime generalization. The experimental results show that GreedyIL performs efficiently.</abstract><cop>Pittsburgh</cop><pub>L J S Publishing</pub><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1947-5500 |
ispartof | International journal of computer science and information security, 2015-04, Vol.13 (4), p.6-6 |
issn | 1947-5500 |
language | eng |
recordid | cdi_proquest_miscellaneous_1701002681 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Computer information security Customizing Internet Methods Personal information Personalized Queries Reluctance Retrieval performance measures Search engines Searching Service introduction UPS User profiles |
title | User Customizable Privacy-Preserving Personalized Web Search |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A56%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=User%20Customizable%20Privacy-Preserving%20Personalized%20Web%20Search&rft.jtitle=International%20journal%20of%20computer%20science%20and%20information%20security&rft.au=Akhila,%20G%20S&rft.date=2015-04-01&rft.volume=13&rft.issue=4&rft.spage=6&rft.epage=6&rft.pages=6-6&rft.eissn=1947-5500&rft_id=info:doi/&rft_dat=%3Cproquest%3E1701002681%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1682662054&rft_id=info:pmid/&rfr_iscdi=true |