User Customizable Privacy-Preserving Personalized Web Search

Personalized web search (PWS) has demonstrated its effectiveness in improving the quality of various search services on the Internet. However, evidences show that users' reluctance to disclose their private information during search has become a major barrier for the wide proliferation of PWS....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer science and information security 2015-04, Vol.13 (4), p.6-6
Hauptverfasser: Akhila, G S, Prasanth, R S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 4
container_start_page 6
container_title International journal of computer science and information security
container_volume 13
creator Akhila, G S
Prasanth, R S
description Personalized web search (PWS) has demonstrated its effectiveness in improving the quality of various search services on the Internet. However, evidences show that users' reluctance to disclose their private information during search has become a major barrier for the wide proliferation of PWS. This paper proposes a PWS framework called UPS that can adaptively generalize profiles by queries while respecting user specified privacy requirements. Present an algorithm, namely GreedylL, for runtime generalization. The experimental results show that GreedyIL performs efficiently.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701002681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701002681</sourcerecordid><originalsourceid>FETCH-LOGICAL-p611-f9a6cd9277580fee24e970fdbaf6631b7db459ebc64d2624bdc3bf93a39cac3a3</originalsourceid><addsrcrecordid>eNpdjktLAzEYRYMgtNT-h0A3bgbyzgTcyOALCh2w4rLk8UWnTGdq0inYX29AV97NWdzD5V6hOTVCV1ISMkPLnPekhFMhqZyju7cMCTdTPo2H7mJdD7hN3dn676pNULpzN3zgFlIeB9t3Fwj4HRx-BZv85w26jrbPsPzjAm0fH7bNc7XePL009-vqqCitorHKB8O0ljWJAEyA0SQGZ6NSnDodnJAGnFciMMWEC567aLjlxltfsEC3v7PHNH5NkE-7Q5c99L0dYJzyjmpCCWGqpkVd_VP345TK82KpminFiBT8B05kUgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1682662054</pqid></control><display><type>article</type><title>User Customizable Privacy-Preserving Personalized Web Search</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Akhila, G S ; Prasanth, R S</creator><creatorcontrib>Akhila, G S ; Prasanth, R S</creatorcontrib><description>Personalized web search (PWS) has demonstrated its effectiveness in improving the quality of various search services on the Internet. However, evidences show that users' reluctance to disclose their private information during search has become a major barrier for the wide proliferation of PWS. This paper proposes a PWS framework called UPS that can adaptively generalize profiles by queries while respecting user specified privacy requirements. Present an algorithm, namely GreedylL, for runtime generalization. The experimental results show that GreedyIL performs efficiently.</description><identifier>EISSN: 1947-5500</identifier><language>eng</language><publisher>Pittsburgh: L J S Publishing</publisher><subject>Algorithms ; Computer information security ; Customizing ; Internet ; Methods ; Personal information ; Personalized ; Queries ; Reluctance ; Retrieval performance measures ; Search engines ; Searching ; Service introduction ; UPS ; User profiles</subject><ispartof>International journal of computer science and information security, 2015-04, Vol.13 (4), p.6-6</ispartof><rights>Copyright L J S Publishing Apr 2015</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Akhila, G S</creatorcontrib><creatorcontrib>Prasanth, R S</creatorcontrib><title>User Customizable Privacy-Preserving Personalized Web Search</title><title>International journal of computer science and information security</title><description>Personalized web search (PWS) has demonstrated its effectiveness in improving the quality of various search services on the Internet. However, evidences show that users' reluctance to disclose their private information during search has become a major barrier for the wide proliferation of PWS. This paper proposes a PWS framework called UPS that can adaptively generalize profiles by queries while respecting user specified privacy requirements. Present an algorithm, namely GreedylL, for runtime generalization. The experimental results show that GreedyIL performs efficiently.</description><subject>Algorithms</subject><subject>Computer information security</subject><subject>Customizing</subject><subject>Internet</subject><subject>Methods</subject><subject>Personal information</subject><subject>Personalized</subject><subject>Queries</subject><subject>Reluctance</subject><subject>Retrieval performance measures</subject><subject>Search engines</subject><subject>Searching</subject><subject>Service introduction</subject><subject>UPS</subject><subject>User profiles</subject><issn>1947-5500</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdjktLAzEYRYMgtNT-h0A3bgbyzgTcyOALCh2w4rLk8UWnTGdq0inYX29AV97NWdzD5V6hOTVCV1ISMkPLnPekhFMhqZyju7cMCTdTPo2H7mJdD7hN3dn676pNULpzN3zgFlIeB9t3Fwj4HRx-BZv85w26jrbPsPzjAm0fH7bNc7XePL009-vqqCitorHKB8O0ljWJAEyA0SQGZ6NSnDodnJAGnFciMMWEC567aLjlxltfsEC3v7PHNH5NkE-7Q5c99L0dYJzyjmpCCWGqpkVd_VP345TK82KpminFiBT8B05kUgQ</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Akhila, G S</creator><creator>Prasanth, R S</creator><general>L J S Publishing</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150401</creationdate><title>User Customizable Privacy-Preserving Personalized Web Search</title><author>Akhila, G S ; Prasanth, R S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p611-f9a6cd9277580fee24e970fdbaf6631b7db459ebc64d2624bdc3bf93a39cac3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Computer information security</topic><topic>Customizing</topic><topic>Internet</topic><topic>Methods</topic><topic>Personal information</topic><topic>Personalized</topic><topic>Queries</topic><topic>Reluctance</topic><topic>Retrieval performance measures</topic><topic>Search engines</topic><topic>Searching</topic><topic>Service introduction</topic><topic>UPS</topic><topic>User profiles</topic><toplevel>online_resources</toplevel><creatorcontrib>Akhila, G S</creatorcontrib><creatorcontrib>Prasanth, R S</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer science and information security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akhila, G S</au><au>Prasanth, R S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>User Customizable Privacy-Preserving Personalized Web Search</atitle><jtitle>International journal of computer science and information security</jtitle><date>2015-04-01</date><risdate>2015</risdate><volume>13</volume><issue>4</issue><spage>6</spage><epage>6</epage><pages>6-6</pages><eissn>1947-5500</eissn><abstract>Personalized web search (PWS) has demonstrated its effectiveness in improving the quality of various search services on the Internet. However, evidences show that users' reluctance to disclose their private information during search has become a major barrier for the wide proliferation of PWS. This paper proposes a PWS framework called UPS that can adaptively generalize profiles by queries while respecting user specified privacy requirements. Present an algorithm, namely GreedylL, for runtime generalization. The experimental results show that GreedyIL performs efficiently.</abstract><cop>Pittsburgh</cop><pub>L J S Publishing</pub><tpages>1</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1947-5500
ispartof International journal of computer science and information security, 2015-04, Vol.13 (4), p.6-6
issn 1947-5500
language eng
recordid cdi_proquest_miscellaneous_1701002681
source EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Computer information security
Customizing
Internet
Methods
Personal information
Personalized
Queries
Reluctance
Retrieval performance measures
Search engines
Searching
Service introduction
UPS
User profiles
title User Customizable Privacy-Preserving Personalized Web Search
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A56%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=User%20Customizable%20Privacy-Preserving%20Personalized%20Web%20Search&rft.jtitle=International%20journal%20of%20computer%20science%20and%20information%20security&rft.au=Akhila,%20G%20S&rft.date=2015-04-01&rft.volume=13&rft.issue=4&rft.spage=6&rft.epage=6&rft.pages=6-6&rft.eissn=1947-5500&rft_id=info:doi/&rft_dat=%3Cproquest%3E1701002681%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1682662054&rft_id=info:pmid/&rfr_iscdi=true