Transport properties of the one-dimensional Hubbard model at finite temperature
We study finite-temperature transport properties of the one-dimensional Hubbard model using the density matrix renormalization group. Our aim is twofold: First, we compute both the charge- and the spin-current correlation function of the integrable model at half filling. The former decays rapidly, i...
Gespeichert in:
Veröffentlicht in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2014-10, Vol.90 (15), Article 155104 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 15 |
container_start_page | |
container_title | Physical review. B, Condensed matter and materials physics |
container_volume | 90 |
creator | Karrasch, C. Kennes, D. M. Moore, J. E. |
description | We study finite-temperature transport properties of the one-dimensional Hubbard model using the density matrix renormalization group. Our aim is twofold: First, we compute both the charge- and the spin-current correlation function of the integrable model at half filling. The former decays rapidly, implying that the corresponding Drude weight is either zero or very small. Second, we calculate the optical charge conductivity [sigma] sub(r) eg( omega ) in the presence of small integrability-breaking next-nearest-neighbor interactions (the extended Hubbard model). The dc conductivity is finite and diverges as the temperature is decreased below the gap. Our results thus suggest that the half-filled, gapped Hubbard model is a normal charge conductor at finite temperatures. As a test bed for our numerics, we compute [sigma] sub(r) eg( omega ) for the integrable XXZ spin chain in its gapped phase. |
doi_str_mv | 10.1103/PhysRevB.90.155104 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701000101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701000101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-e618e2ef82a4eb5e872fecad127a281eb2044a901cf0cbf70fb9246572d219193</originalsourceid><addsrcrecordid>eNo1kEFLxDAQhYMouK7-AU85euk6k6bb5qiLusLCiqzgraTthK20TU1SYf-90dXTPB5vhnkfY9cIC0RIb1_2B_9KX_cLFY0sQ5AnbBYFJCLN3k-jBlUkgALP2YX3HwAolRQztt05PfjRusBHZ0dyoSXPreFhT9wOlDRtT4Nv7aA7vp6qSruG97ahjuvATTu0gXigPm7qMDm6ZGdGd56u_uacvT0-7FbrZLN9el7dbZI6VVlIaIkFCTKF0JKqjIpcGKp1gyLXokCqBEipFWBtoK5MDqZSQi6zXDQCFap0zm6Od-PXnxP5UPatr6nr9EB28iXmgBBbAsaoOEZrZ713ZMrRtb12hxKh_KFX_tMrVTR-6aXf1UllnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701000101</pqid></control><display><type>article</type><title>Transport properties of the one-dimensional Hubbard model at finite temperature</title><source>American Physical Society Journals</source><creator>Karrasch, C. ; Kennes, D. M. ; Moore, J. E.</creator><creatorcontrib>Karrasch, C. ; Kennes, D. M. ; Moore, J. E.</creatorcontrib><description>We study finite-temperature transport properties of the one-dimensional Hubbard model using the density matrix renormalization group. Our aim is twofold: First, we compute both the charge- and the spin-current correlation function of the integrable model at half filling. The former decays rapidly, implying that the corresponding Drude weight is either zero or very small. Second, we calculate the optical charge conductivity [sigma] sub(r) eg( omega ) in the presence of small integrability-breaking next-nearest-neighbor interactions (the extended Hubbard model). The dc conductivity is finite and diverges as the temperature is decreased below the gap. Our results thus suggest that the half-filled, gapped Hubbard model is a normal charge conductor at finite temperatures. As a test bed for our numerics, we compute [sigma] sub(r) eg( omega ) for the integrable XXZ spin chain in its gapped phase.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.90.155104</identifier><language>eng</language><subject>Chains ; Charge ; Condensed matter ; Correlation ; Decay ; Density ; Mathematical analysis ; Mathematical models ; Transport properties</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2014-10, Vol.90 (15), Article 155104</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-e618e2ef82a4eb5e872fecad127a281eb2044a901cf0cbf70fb9246572d219193</citedby><cites>FETCH-LOGICAL-c395t-e618e2ef82a4eb5e872fecad127a281eb2044a901cf0cbf70fb9246572d219193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Karrasch, C.</creatorcontrib><creatorcontrib>Kennes, D. M.</creatorcontrib><creatorcontrib>Moore, J. E.</creatorcontrib><title>Transport properties of the one-dimensional Hubbard model at finite temperature</title><title>Physical review. B, Condensed matter and materials physics</title><description>We study finite-temperature transport properties of the one-dimensional Hubbard model using the density matrix renormalization group. Our aim is twofold: First, we compute both the charge- and the spin-current correlation function of the integrable model at half filling. The former decays rapidly, implying that the corresponding Drude weight is either zero or very small. Second, we calculate the optical charge conductivity [sigma] sub(r) eg( omega ) in the presence of small integrability-breaking next-nearest-neighbor interactions (the extended Hubbard model). The dc conductivity is finite and diverges as the temperature is decreased below the gap. Our results thus suggest that the half-filled, gapped Hubbard model is a normal charge conductor at finite temperatures. As a test bed for our numerics, we compute [sigma] sub(r) eg( omega ) for the integrable XXZ spin chain in its gapped phase.</description><subject>Chains</subject><subject>Charge</subject><subject>Condensed matter</subject><subject>Correlation</subject><subject>Decay</subject><subject>Density</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Transport properties</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo1kEFLxDAQhYMouK7-AU85euk6k6bb5qiLusLCiqzgraTthK20TU1SYf-90dXTPB5vhnkfY9cIC0RIb1_2B_9KX_cLFY0sQ5AnbBYFJCLN3k-jBlUkgALP2YX3HwAolRQztt05PfjRusBHZ0dyoSXPreFhT9wOlDRtT4Nv7aA7vp6qSruG97ahjuvATTu0gXigPm7qMDm6ZGdGd56u_uacvT0-7FbrZLN9el7dbZI6VVlIaIkFCTKF0JKqjIpcGKp1gyLXokCqBEipFWBtoK5MDqZSQi6zXDQCFap0zm6Od-PXnxP5UPatr6nr9EB28iXmgBBbAsaoOEZrZ713ZMrRtb12hxKh_KFX_tMrVTR-6aXf1UllnQ</recordid><startdate>20141003</startdate><enddate>20141003</enddate><creator>Karrasch, C.</creator><creator>Kennes, D. M.</creator><creator>Moore, J. E.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20141003</creationdate><title>Transport properties of the one-dimensional Hubbard model at finite temperature</title><author>Karrasch, C. ; Kennes, D. M. ; Moore, J. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-e618e2ef82a4eb5e872fecad127a281eb2044a901cf0cbf70fb9246572d219193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chains</topic><topic>Charge</topic><topic>Condensed matter</topic><topic>Correlation</topic><topic>Decay</topic><topic>Density</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karrasch, C.</creatorcontrib><creatorcontrib>Kennes, D. M.</creatorcontrib><creatorcontrib>Moore, J. E.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karrasch, C.</au><au>Kennes, D. M.</au><au>Moore, J. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport properties of the one-dimensional Hubbard model at finite temperature</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2014-10-03</date><risdate>2014</risdate><volume>90</volume><issue>15</issue><artnum>155104</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>We study finite-temperature transport properties of the one-dimensional Hubbard model using the density matrix renormalization group. Our aim is twofold: First, we compute both the charge- and the spin-current correlation function of the integrable model at half filling. The former decays rapidly, implying that the corresponding Drude weight is either zero or very small. Second, we calculate the optical charge conductivity [sigma] sub(r) eg( omega ) in the presence of small integrability-breaking next-nearest-neighbor interactions (the extended Hubbard model). The dc conductivity is finite and diverges as the temperature is decreased below the gap. Our results thus suggest that the half-filled, gapped Hubbard model is a normal charge conductor at finite temperatures. As a test bed for our numerics, we compute [sigma] sub(r) eg( omega ) for the integrable XXZ spin chain in its gapped phase.</abstract><doi>10.1103/PhysRevB.90.155104</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1098-0121 |
ispartof | Physical review. B, Condensed matter and materials physics, 2014-10, Vol.90 (15), Article 155104 |
issn | 1098-0121 1550-235X |
language | eng |
recordid | cdi_proquest_miscellaneous_1701000101 |
source | American Physical Society Journals |
subjects | Chains Charge Condensed matter Correlation Decay Density Mathematical analysis Mathematical models Transport properties |
title | Transport properties of the one-dimensional Hubbard model at finite temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A29%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20properties%20of%20the%20one-dimensional%20Hubbard%20model%20at%20finite%20temperature&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Karrasch,%20C.&rft.date=2014-10-03&rft.volume=90&rft.issue=15&rft.artnum=155104&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.90.155104&rft_dat=%3Cproquest_cross%3E1701000101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701000101&rft_id=info:pmid/&rfr_iscdi=true |