Transport properties of the one-dimensional Hubbard model at finite temperature

We study finite-temperature transport properties of the one-dimensional Hubbard model using the density matrix renormalization group. Our aim is twofold: First, we compute both the charge- and the spin-current correlation function of the integrable model at half filling. The former decays rapidly, i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2014-10, Vol.90 (15), Article 155104
Hauptverfasser: Karrasch, C., Kennes, D. M., Moore, J. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 15
container_start_page
container_title Physical review. B, Condensed matter and materials physics
container_volume 90
creator Karrasch, C.
Kennes, D. M.
Moore, J. E.
description We study finite-temperature transport properties of the one-dimensional Hubbard model using the density matrix renormalization group. Our aim is twofold: First, we compute both the charge- and the spin-current correlation function of the integrable model at half filling. The former decays rapidly, implying that the corresponding Drude weight is either zero or very small. Second, we calculate the optical charge conductivity [sigma] sub(r) eg( omega ) in the presence of small integrability-breaking next-nearest-neighbor interactions (the extended Hubbard model). The dc conductivity is finite and diverges as the temperature is decreased below the gap. Our results thus suggest that the half-filled, gapped Hubbard model is a normal charge conductor at finite temperatures. As a test bed for our numerics, we compute [sigma] sub(r) eg( omega ) for the integrable XXZ spin chain in its gapped phase.
doi_str_mv 10.1103/PhysRevB.90.155104
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701000101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701000101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-e618e2ef82a4eb5e872fecad127a281eb2044a901cf0cbf70fb9246572d219193</originalsourceid><addsrcrecordid>eNo1kEFLxDAQhYMouK7-AU85euk6k6bb5qiLusLCiqzgraTthK20TU1SYf-90dXTPB5vhnkfY9cIC0RIb1_2B_9KX_cLFY0sQ5AnbBYFJCLN3k-jBlUkgALP2YX3HwAolRQztt05PfjRusBHZ0dyoSXPreFhT9wOlDRtT4Nv7aA7vp6qSruG97ahjuvATTu0gXigPm7qMDm6ZGdGd56u_uacvT0-7FbrZLN9el7dbZI6VVlIaIkFCTKF0JKqjIpcGKp1gyLXokCqBEipFWBtoK5MDqZSQi6zXDQCFap0zm6Od-PXnxP5UPatr6nr9EB28iXmgBBbAsaoOEZrZ713ZMrRtb12hxKh_KFX_tMrVTR-6aXf1UllnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701000101</pqid></control><display><type>article</type><title>Transport properties of the one-dimensional Hubbard model at finite temperature</title><source>American Physical Society Journals</source><creator>Karrasch, C. ; Kennes, D. M. ; Moore, J. E.</creator><creatorcontrib>Karrasch, C. ; Kennes, D. M. ; Moore, J. E.</creatorcontrib><description>We study finite-temperature transport properties of the one-dimensional Hubbard model using the density matrix renormalization group. Our aim is twofold: First, we compute both the charge- and the spin-current correlation function of the integrable model at half filling. The former decays rapidly, implying that the corresponding Drude weight is either zero or very small. Second, we calculate the optical charge conductivity [sigma] sub(r) eg( omega ) in the presence of small integrability-breaking next-nearest-neighbor interactions (the extended Hubbard model). The dc conductivity is finite and diverges as the temperature is decreased below the gap. Our results thus suggest that the half-filled, gapped Hubbard model is a normal charge conductor at finite temperatures. As a test bed for our numerics, we compute [sigma] sub(r) eg( omega ) for the integrable XXZ spin chain in its gapped phase.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.90.155104</identifier><language>eng</language><subject>Chains ; Charge ; Condensed matter ; Correlation ; Decay ; Density ; Mathematical analysis ; Mathematical models ; Transport properties</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2014-10, Vol.90 (15), Article 155104</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-e618e2ef82a4eb5e872fecad127a281eb2044a901cf0cbf70fb9246572d219193</citedby><cites>FETCH-LOGICAL-c395t-e618e2ef82a4eb5e872fecad127a281eb2044a901cf0cbf70fb9246572d219193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Karrasch, C.</creatorcontrib><creatorcontrib>Kennes, D. M.</creatorcontrib><creatorcontrib>Moore, J. E.</creatorcontrib><title>Transport properties of the one-dimensional Hubbard model at finite temperature</title><title>Physical review. B, Condensed matter and materials physics</title><description>We study finite-temperature transport properties of the one-dimensional Hubbard model using the density matrix renormalization group. Our aim is twofold: First, we compute both the charge- and the spin-current correlation function of the integrable model at half filling. The former decays rapidly, implying that the corresponding Drude weight is either zero or very small. Second, we calculate the optical charge conductivity [sigma] sub(r) eg( omega ) in the presence of small integrability-breaking next-nearest-neighbor interactions (the extended Hubbard model). The dc conductivity is finite and diverges as the temperature is decreased below the gap. Our results thus suggest that the half-filled, gapped Hubbard model is a normal charge conductor at finite temperatures. As a test bed for our numerics, we compute [sigma] sub(r) eg( omega ) for the integrable XXZ spin chain in its gapped phase.</description><subject>Chains</subject><subject>Charge</subject><subject>Condensed matter</subject><subject>Correlation</subject><subject>Decay</subject><subject>Density</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Transport properties</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo1kEFLxDAQhYMouK7-AU85euk6k6bb5qiLusLCiqzgraTthK20TU1SYf-90dXTPB5vhnkfY9cIC0RIb1_2B_9KX_cLFY0sQ5AnbBYFJCLN3k-jBlUkgALP2YX3HwAolRQztt05PfjRusBHZ0dyoSXPreFhT9wOlDRtT4Nv7aA7vp6qSruG97ahjuvATTu0gXigPm7qMDm6ZGdGd56u_uacvT0-7FbrZLN9el7dbZI6VVlIaIkFCTKF0JKqjIpcGKp1gyLXokCqBEipFWBtoK5MDqZSQi6zXDQCFap0zm6Od-PXnxP5UPatr6nr9EB28iXmgBBbAsaoOEZrZ713ZMrRtb12hxKh_KFX_tMrVTR-6aXf1UllnQ</recordid><startdate>20141003</startdate><enddate>20141003</enddate><creator>Karrasch, C.</creator><creator>Kennes, D. M.</creator><creator>Moore, J. E.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20141003</creationdate><title>Transport properties of the one-dimensional Hubbard model at finite temperature</title><author>Karrasch, C. ; Kennes, D. M. ; Moore, J. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-e618e2ef82a4eb5e872fecad127a281eb2044a901cf0cbf70fb9246572d219193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chains</topic><topic>Charge</topic><topic>Condensed matter</topic><topic>Correlation</topic><topic>Decay</topic><topic>Density</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karrasch, C.</creatorcontrib><creatorcontrib>Kennes, D. M.</creatorcontrib><creatorcontrib>Moore, J. E.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karrasch, C.</au><au>Kennes, D. M.</au><au>Moore, J. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport properties of the one-dimensional Hubbard model at finite temperature</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2014-10-03</date><risdate>2014</risdate><volume>90</volume><issue>15</issue><artnum>155104</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>We study finite-temperature transport properties of the one-dimensional Hubbard model using the density matrix renormalization group. Our aim is twofold: First, we compute both the charge- and the spin-current correlation function of the integrable model at half filling. The former decays rapidly, implying that the corresponding Drude weight is either zero or very small. Second, we calculate the optical charge conductivity [sigma] sub(r) eg( omega ) in the presence of small integrability-breaking next-nearest-neighbor interactions (the extended Hubbard model). The dc conductivity is finite and diverges as the temperature is decreased below the gap. Our results thus suggest that the half-filled, gapped Hubbard model is a normal charge conductor at finite temperatures. As a test bed for our numerics, we compute [sigma] sub(r) eg( omega ) for the integrable XXZ spin chain in its gapped phase.</abstract><doi>10.1103/PhysRevB.90.155104</doi></addata></record>
fulltext fulltext
identifier ISSN: 1098-0121
ispartof Physical review. B, Condensed matter and materials physics, 2014-10, Vol.90 (15), Article 155104
issn 1098-0121
1550-235X
language eng
recordid cdi_proquest_miscellaneous_1701000101
source American Physical Society Journals
subjects Chains
Charge
Condensed matter
Correlation
Decay
Density
Mathematical analysis
Mathematical models
Transport properties
title Transport properties of the one-dimensional Hubbard model at finite temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A29%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20properties%20of%20the%20one-dimensional%20Hubbard%20model%20at%20finite%20temperature&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Karrasch,%20C.&rft.date=2014-10-03&rft.volume=90&rft.issue=15&rft.artnum=155104&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.90.155104&rft_dat=%3Cproquest_cross%3E1701000101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701000101&rft_id=info:pmid/&rfr_iscdi=true