Energy Requirement for Lignocellulosic Feedstock Densifications in Relation to Particle Physical Properties, Preheating, and Binding Agents

The low bulk density and low flowability of lignocellulosic biomass feedstock have been regarded widely as major barriers for a sustainable and efficient supply system. Densification of biomass is a viable option to increase the bulk (and inherent energy) density and flowability of feedstock, leadin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2013-01, Vol.27 (1), p.588-595
Hauptverfasser: Miao, Zewei, Grift, Tony E, Hansen, Alan C, Ting, K. C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 595
container_issue 1
container_start_page 588
container_title Energy & fuels
container_volume 27
creator Miao, Zewei
Grift, Tony E
Hansen, Alan C
Ting, K. C
description The low bulk density and low flowability of lignocellulosic biomass feedstock have been regarded widely as major barriers for a sustainable and efficient supply system. Densification of biomass is a viable option to increase the bulk (and inherent energy) density and flowability of feedstock, leading to improved efficiency of the supply system. The energy consumption of feedstock densification is one of the key variables that determines the efficiency of the feedstock supply. This paper investigates the energy consumption of herbaceous feedstock compression in relation to particle physical properties, preheating, and binding agents, such as steep water and thin stillage, both byproducts of corn ethanol production. The results indicate that the specific energy consumption for mini-bale densification was a function of the particle size, moisture content, and feedstock type. During pelletization, where all pellets were exposed to an identical maximum pressure, preheating temperature, particle size, and moisture content played a significant role in improving the energy efficiency and pellet density. Both binding agents increased the energy requirement for pelletization but yielded more durable pellets.
doi_str_mv 10.1021/ef301562k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1700994444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1700994444</sourcerecordid><originalsourceid>FETCH-LOGICAL-a325t-65c8038b02427398dac34692ecfa442bdc6cea59bab547d76b566dea84f6eadb3</originalsourceid><addsrcrecordid>eNqFkcFOwzAMhiMEEmNw4A1yQQJphTRt0uY4xgZIk5gQnKs0dbtsXTKS9rBn4KXJGOKEhC_2b32_LcsIXcbkNiY0voM6ITHjdH2EBjGjJGKEimM0IHmeRYTT9BSdeb8ihPAkZwP0OTXgmh1-hY9eO9iA6XBtHZ7rxlgFbdu31muFZwCV76xa4wcwXtdayU5b47E2wdt-C9xZvJCu06oFvFjugk-2eOHsFkIT_CjUsITAmmaEpanwvTZVEHjchL3-HJ3UsvVw8ZOH6H02fZs8RfOXx-fJeB7JhLIu4kzlJMlLQlOaJSKvpEpSLiioWqYpLSvFFUgmSlmyNKsyXjLOK5B5WnOQVZkM0fVh7tbZjx58V2y0398qDdjeF3FGiBBpiP9RRsNKkgkR0JsDqpz13kFdbJ3eSLcrYlLsf1P8_iawVwdWKl-sbO9MuPcP7gtG9Y_i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1524420799</pqid></control><display><type>article</type><title>Energy Requirement for Lignocellulosic Feedstock Densifications in Relation to Particle Physical Properties, Preheating, and Binding Agents</title><source>ACS Publications</source><creator>Miao, Zewei ; Grift, Tony E ; Hansen, Alan C ; Ting, K. C</creator><creatorcontrib>Miao, Zewei ; Grift, Tony E ; Hansen, Alan C ; Ting, K. C</creatorcontrib><description>The low bulk density and low flowability of lignocellulosic biomass feedstock have been regarded widely as major barriers for a sustainable and efficient supply system. Densification of biomass is a viable option to increase the bulk (and inherent energy) density and flowability of feedstock, leading to improved efficiency of the supply system. The energy consumption of feedstock densification is one of the key variables that determines the efficiency of the feedstock supply. This paper investigates the energy consumption of herbaceous feedstock compression in relation to particle physical properties, preheating, and binding agents, such as steep water and thin stillage, both byproducts of corn ethanol production. The results indicate that the specific energy consumption for mini-bale densification was a function of the particle size, moisture content, and feedstock type. During pelletization, where all pellets were exposed to an identical maximum pressure, preheating temperature, particle size, and moisture content played a significant role in improving the energy efficiency and pellet density. Both binding agents increased the energy requirement for pelletization but yielded more durable pellets.</description><identifier>ISSN: 0887-0624</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/ef301562k</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Binding energy ; Densification ; Density ; Energy consumption ; Ethyl alcohol ; Feedstock ; Heating ; Pellets ; Preheating</subject><ispartof>Energy &amp; fuels, 2013-01, Vol.27 (1), p.588-595</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a325t-65c8038b02427398dac34692ecfa442bdc6cea59bab547d76b566dea84f6eadb3</citedby><cites>FETCH-LOGICAL-a325t-65c8038b02427398dac34692ecfa442bdc6cea59bab547d76b566dea84f6eadb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ef301562k$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ef301562k$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2769,27085,27933,27934,56747,56797</link.rule.ids></links><search><creatorcontrib>Miao, Zewei</creatorcontrib><creatorcontrib>Grift, Tony E</creatorcontrib><creatorcontrib>Hansen, Alan C</creatorcontrib><creatorcontrib>Ting, K. C</creatorcontrib><title>Energy Requirement for Lignocellulosic Feedstock Densifications in Relation to Particle Physical Properties, Preheating, and Binding Agents</title><title>Energy &amp; fuels</title><addtitle>Energy Fuels</addtitle><description>The low bulk density and low flowability of lignocellulosic biomass feedstock have been regarded widely as major barriers for a sustainable and efficient supply system. Densification of biomass is a viable option to increase the bulk (and inherent energy) density and flowability of feedstock, leading to improved efficiency of the supply system. The energy consumption of feedstock densification is one of the key variables that determines the efficiency of the feedstock supply. This paper investigates the energy consumption of herbaceous feedstock compression in relation to particle physical properties, preheating, and binding agents, such as steep water and thin stillage, both byproducts of corn ethanol production. The results indicate that the specific energy consumption for mini-bale densification was a function of the particle size, moisture content, and feedstock type. During pelletization, where all pellets were exposed to an identical maximum pressure, preheating temperature, particle size, and moisture content played a significant role in improving the energy efficiency and pellet density. Both binding agents increased the energy requirement for pelletization but yielded more durable pellets.</description><subject>Binding energy</subject><subject>Densification</subject><subject>Density</subject><subject>Energy consumption</subject><subject>Ethyl alcohol</subject><subject>Feedstock</subject><subject>Heating</subject><subject>Pellets</subject><subject>Preheating</subject><issn>0887-0624</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkcFOwzAMhiMEEmNw4A1yQQJphTRt0uY4xgZIk5gQnKs0dbtsXTKS9rBn4KXJGOKEhC_2b32_LcsIXcbkNiY0voM6ITHjdH2EBjGjJGKEimM0IHmeRYTT9BSdeb8ihPAkZwP0OTXgmh1-hY9eO9iA6XBtHZ7rxlgFbdu31muFZwCV76xa4wcwXtdayU5b47E2wdt-C9xZvJCu06oFvFjugk-2eOHsFkIT_CjUsITAmmaEpanwvTZVEHjchL3-HJ3UsvVw8ZOH6H02fZs8RfOXx-fJeB7JhLIu4kzlJMlLQlOaJSKvpEpSLiioWqYpLSvFFUgmSlmyNKsyXjLOK5B5WnOQVZkM0fVh7tbZjx58V2y0398qDdjeF3FGiBBpiP9RRsNKkgkR0JsDqpz13kFdbJ3eSLcrYlLsf1P8_iawVwdWKl-sbO9MuPcP7gtG9Y_i</recordid><startdate>20130117</startdate><enddate>20130117</enddate><creator>Miao, Zewei</creator><creator>Grift, Tony E</creator><creator>Hansen, Alan C</creator><creator>Ting, K. C</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130117</creationdate><title>Energy Requirement for Lignocellulosic Feedstock Densifications in Relation to Particle Physical Properties, Preheating, and Binding Agents</title><author>Miao, Zewei ; Grift, Tony E ; Hansen, Alan C ; Ting, K. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a325t-65c8038b02427398dac34692ecfa442bdc6cea59bab547d76b566dea84f6eadb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Binding energy</topic><topic>Densification</topic><topic>Density</topic><topic>Energy consumption</topic><topic>Ethyl alcohol</topic><topic>Feedstock</topic><topic>Heating</topic><topic>Pellets</topic><topic>Preheating</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Zewei</creatorcontrib><creatorcontrib>Grift, Tony E</creatorcontrib><creatorcontrib>Hansen, Alan C</creatorcontrib><creatorcontrib>Ting, K. C</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Zewei</au><au>Grift, Tony E</au><au>Hansen, Alan C</au><au>Ting, K. C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy Requirement for Lignocellulosic Feedstock Densifications in Relation to Particle Physical Properties, Preheating, and Binding Agents</atitle><jtitle>Energy &amp; fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2013-01-17</date><risdate>2013</risdate><volume>27</volume><issue>1</issue><spage>588</spage><epage>595</epage><pages>588-595</pages><issn>0887-0624</issn><eissn>1520-5029</eissn><abstract>The low bulk density and low flowability of lignocellulosic biomass feedstock have been regarded widely as major barriers for a sustainable and efficient supply system. Densification of biomass is a viable option to increase the bulk (and inherent energy) density and flowability of feedstock, leading to improved efficiency of the supply system. The energy consumption of feedstock densification is one of the key variables that determines the efficiency of the feedstock supply. This paper investigates the energy consumption of herbaceous feedstock compression in relation to particle physical properties, preheating, and binding agents, such as steep water and thin stillage, both byproducts of corn ethanol production. The results indicate that the specific energy consumption for mini-bale densification was a function of the particle size, moisture content, and feedstock type. During pelletization, where all pellets were exposed to an identical maximum pressure, preheating temperature, particle size, and moisture content played a significant role in improving the energy efficiency and pellet density. Both binding agents increased the energy requirement for pelletization but yielded more durable pellets.</abstract><pub>American Chemical Society</pub><doi>10.1021/ef301562k</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0887-0624
ispartof Energy & fuels, 2013-01, Vol.27 (1), p.588-595
issn 0887-0624
1520-5029
language eng
recordid cdi_proquest_miscellaneous_1700994444
source ACS Publications
subjects Binding energy
Densification
Density
Energy consumption
Ethyl alcohol
Feedstock
Heating
Pellets
Preheating
title Energy Requirement for Lignocellulosic Feedstock Densifications in Relation to Particle Physical Properties, Preheating, and Binding Agents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T08%3A52%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20Requirement%20for%20Lignocellulosic%20Feedstock%20Densifications%20in%20Relation%20to%20Particle%20Physical%20Properties,%20Preheating,%20and%20Binding%20Agents&rft.jtitle=Energy%20&%20fuels&rft.au=Miao,%20Zewei&rft.date=2013-01-17&rft.volume=27&rft.issue=1&rft.spage=588&rft.epage=595&rft.pages=588-595&rft.issn=0887-0624&rft.eissn=1520-5029&rft_id=info:doi/10.1021/ef301562k&rft_dat=%3Cproquest_cross%3E1700994444%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1524420799&rft_id=info:pmid/&rfr_iscdi=true