Self-Assembly of DNA-Oligo(p-phenylene-ethynylene) Hybrid Amphiphiles into Surface-Engineered Vesicles with Enhanced Emission

Surface‐addressable nanostructures of linearly π‐conjugated molecules play a crucial role in the emerging field of nanoelectronics. Herein, by using DNA as the hydrophilic segment, we demonstrate a solid‐phase “click” chemistry approach for the synthesis of a series of DNA–chromophore hybrid amphiph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2014-08, Vol.53 (32), p.8352-8357
Hauptverfasser: Albert, Shine K., Thelu, Hari Veera Prasad, Golla, Murali, Krishnan, Nithiyanandan, Chaudhary, Soma, Varghese, Reji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Surface‐addressable nanostructures of linearly π‐conjugated molecules play a crucial role in the emerging field of nanoelectronics. Herein, by using DNA as the hydrophilic segment, we demonstrate a solid‐phase “click” chemistry approach for the synthesis of a series of DNA–chromophore hybrid amphiphiles and report their reversible self‐assembly into surface‐engineered vesicles with enhanced emission. DNA‐directed surface addressability of the vesicles was demonstrated through the integration of gold nanoparticles onto the surface of the vesicles by sequence‐specific DNA hybridization. This system could be converted to a supramolecular light‐harvesting antenna by integrating suitable FRET acceptors onto the surface of the nanostructures. The general nature of the synthesis, surface addressability, and biocompatibility of the resulting nanostructures offer great promises for nanoelectronics, energy, and biomedical applications. Surface engineering: DNA–oligomer hybrid amphiphiles self‐assemble into surface‐functionalized vesicles with enhanced emission. Sequence‐specific DNA hybridization allows the assembly of functional molecules onto the surface of the vesicle, providing a unique opportunitie to study the distance‐dependent electronic interaction of chromophore stacks with other molecules.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.201403455