Population Shuffling of Protein Conformations

Motions play a vital role in the functions of many proteins. Discrete conformational transitions to excited states, happening on timescales of hundreds of microseconds, have been extensively characterized. On the other hand, the dynamics of the ground state are widely unexplored. Newly developed hig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2015-01, Vol.54 (1), p.207-210
Hauptverfasser: Smith, Colin A., Ban, David, Pratihar, Supriya, Giller, Karin, Schwiegk, Claudia, de Groot, Bert L., Becker, Stefan, Griesinger, Christian, Lee, Donghan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 210
container_issue 1
container_start_page 207
container_title Angewandte Chemie International Edition
container_volume 54
creator Smith, Colin A.
Ban, David
Pratihar, Supriya
Giller, Karin
Schwiegk, Claudia
de Groot, Bert L.
Becker, Stefan
Griesinger, Christian
Lee, Donghan
description Motions play a vital role in the functions of many proteins. Discrete conformational transitions to excited states, happening on timescales of hundreds of microseconds, have been extensively characterized. On the other hand, the dynamics of the ground state are widely unexplored. Newly developed high‐power relaxation dispersion experiments allow the detection of motions up to a one‐digit microsecond timescale. These experiments showed that side chains in the hydrophobic core as well as at protein–protein interaction surfaces of both ubiquitin and the third immunoglobulin binding domain of protein G move on the microsecond timescale. Both proteins exhibit plasticity to this microsecond motion through redistribution of the populations of their side‐chain rotamers, which interconvert on the picosecond to nanosecond timescale, making it likely that this “population shuffling” process is a general mechanism. Connection of motions at different timescales: Slow motions alter the free energies, and thus populations, of protein side‐chain conformations, which themselves interconvert on much faster timescales. The detection of these motions was enabled by advancements in relaxation dispersion experiments, that allow the measurement of motions as fast as 3.4 μs.
doi_str_mv 10.1002/anie.201408890
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1700991741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3539618991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6150-72ae9ff6e8d1cac3c962778f0786da21e7c37ec014a00f3091335f00182fa7f53</originalsourceid><addsrcrecordid>eNqF0TtPwzAUBWALgSivlRFVYmFJuddObGesKl6ilEoUMVomtSEljYvdCPj3uLRUiAEme_ju0bUPIYcIHQSgp7ouTYcCpiBlDhtkBzOKCROCbcZ7ylgiZIYtshvCJHopgW-TFs2iAMl2SDJ0s6bS89LV7bvnxtqqrJ_azraH3s1NWbd7rrbOT79E2CdbVlfBHKzOPXJ_fjbqXSb924urXrefFBwzSATVJreWGznGQhesyDkVQloQko81RSMKJkwRt9YAlkGOjGUWACW1WtiM7ZGTZe7Mu9fGhLmalqEwVaVr45qgUADkOYoU_6c8pRyZyNJIj3_RiWt8HR-iaMY5xs-h8i8Vs0DyuO5CdZaq8C4Eb6ya-XKq_YdCUItm1KIZtW4mDhytYpvHqRmv-XcVEeRL8FZW5uOfONUdXJ39DE-Ws2WYm_f1rPYviov4dvUwuFA316N-f3SHSrJPnx6l6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1640860918</pqid></control><display><type>article</type><title>Population Shuffling of Protein Conformations</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Smith, Colin A. ; Ban, David ; Pratihar, Supriya ; Giller, Karin ; Schwiegk, Claudia ; de Groot, Bert L. ; Becker, Stefan ; Griesinger, Christian ; Lee, Donghan</creator><creatorcontrib>Smith, Colin A. ; Ban, David ; Pratihar, Supriya ; Giller, Karin ; Schwiegk, Claudia ; de Groot, Bert L. ; Becker, Stefan ; Griesinger, Christian ; Lee, Donghan</creatorcontrib><description>Motions play a vital role in the functions of many proteins. Discrete conformational transitions to excited states, happening on timescales of hundreds of microseconds, have been extensively characterized. On the other hand, the dynamics of the ground state are widely unexplored. Newly developed high‐power relaxation dispersion experiments allow the detection of motions up to a one‐digit microsecond timescale. These experiments showed that side chains in the hydrophobic core as well as at protein–protein interaction surfaces of both ubiquitin and the third immunoglobulin binding domain of protein G move on the microsecond timescale. Both proteins exhibit plasticity to this microsecond motion through redistribution of the populations of their side‐chain rotamers, which interconvert on the picosecond to nanosecond timescale, making it likely that this “population shuffling” process is a general mechanism. Connection of motions at different timescales: Slow motions alter the free energies, and thus populations, of protein side‐chain conformations, which themselves interconvert on much faster timescales. The detection of these motions was enabled by advancements in relaxation dispersion experiments, that allow the measurement of motions as fast as 3.4 μs.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201408890</identifier><identifier>PMID: 25377083</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Amino Acid Sequence ; Bacterial Proteins - chemistry ; Binding ; Chains ; conformation ; Crystal structure ; Dispersions ; Dynamics ; Free energy ; Ground state ; Humans ; Hydrophobicity ; Immunoglobulins ; kinetics ; Molecular Dynamics Simulation ; Molecular Sequence Data ; Motion ; Nanostructure ; Plasticity ; Protein Conformation ; protein dynamics ; Protein folding ; Protein G ; Protein Structure, Tertiary ; Proteins ; relaxation dispersion ; Streptococcus - chemistry ; Thermodynamics ; Time ; Ubiquitin ; Ubiquitin - chemistry</subject><ispartof>Angewandte Chemie International Edition, 2015-01, Vol.54 (1), p.207-210</ispartof><rights>2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright Wiley Subscription Services, Inc. Jan 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6150-72ae9ff6e8d1cac3c962778f0786da21e7c37ec014a00f3091335f00182fa7f53</citedby><cites>FETCH-LOGICAL-c6150-72ae9ff6e8d1cac3c962778f0786da21e7c37ec014a00f3091335f00182fa7f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201408890$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201408890$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25377083$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, Colin A.</creatorcontrib><creatorcontrib>Ban, David</creatorcontrib><creatorcontrib>Pratihar, Supriya</creatorcontrib><creatorcontrib>Giller, Karin</creatorcontrib><creatorcontrib>Schwiegk, Claudia</creatorcontrib><creatorcontrib>de Groot, Bert L.</creatorcontrib><creatorcontrib>Becker, Stefan</creatorcontrib><creatorcontrib>Griesinger, Christian</creatorcontrib><creatorcontrib>Lee, Donghan</creatorcontrib><title>Population Shuffling of Protein Conformations</title><title>Angewandte Chemie International Edition</title><addtitle>Angew. Chem. Int. Ed</addtitle><description>Motions play a vital role in the functions of many proteins. Discrete conformational transitions to excited states, happening on timescales of hundreds of microseconds, have been extensively characterized. On the other hand, the dynamics of the ground state are widely unexplored. Newly developed high‐power relaxation dispersion experiments allow the detection of motions up to a one‐digit microsecond timescale. These experiments showed that side chains in the hydrophobic core as well as at protein–protein interaction surfaces of both ubiquitin and the third immunoglobulin binding domain of protein G move on the microsecond timescale. Both proteins exhibit plasticity to this microsecond motion through redistribution of the populations of their side‐chain rotamers, which interconvert on the picosecond to nanosecond timescale, making it likely that this “population shuffling” process is a general mechanism. Connection of motions at different timescales: Slow motions alter the free energies, and thus populations, of protein side‐chain conformations, which themselves interconvert on much faster timescales. The detection of these motions was enabled by advancements in relaxation dispersion experiments, that allow the measurement of motions as fast as 3.4 μs.</description><subject>Amino Acid Sequence</subject><subject>Bacterial Proteins - chemistry</subject><subject>Binding</subject><subject>Chains</subject><subject>conformation</subject><subject>Crystal structure</subject><subject>Dispersions</subject><subject>Dynamics</subject><subject>Free energy</subject><subject>Ground state</subject><subject>Humans</subject><subject>Hydrophobicity</subject><subject>Immunoglobulins</subject><subject>kinetics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular Sequence Data</subject><subject>Motion</subject><subject>Nanostructure</subject><subject>Plasticity</subject><subject>Protein Conformation</subject><subject>protein dynamics</subject><subject>Protein folding</subject><subject>Protein G</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>relaxation dispersion</subject><subject>Streptococcus - chemistry</subject><subject>Thermodynamics</subject><subject>Time</subject><subject>Ubiquitin</subject><subject>Ubiquitin - chemistry</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0TtPwzAUBWALgSivlRFVYmFJuddObGesKl6ilEoUMVomtSEljYvdCPj3uLRUiAEme_ju0bUPIYcIHQSgp7ouTYcCpiBlDhtkBzOKCROCbcZ7ylgiZIYtshvCJHopgW-TFs2iAMl2SDJ0s6bS89LV7bvnxtqqrJ_azraH3s1NWbd7rrbOT79E2CdbVlfBHKzOPXJ_fjbqXSb924urXrefFBwzSATVJreWGznGQhesyDkVQloQko81RSMKJkwRt9YAlkGOjGUWACW1WtiM7ZGTZe7Mu9fGhLmalqEwVaVr45qgUADkOYoU_6c8pRyZyNJIj3_RiWt8HR-iaMY5xs-h8i8Vs0DyuO5CdZaq8C4Eb6ya-XKq_YdCUItm1KIZtW4mDhytYpvHqRmv-XcVEeRL8FZW5uOfONUdXJ39DE-Ws2WYm_f1rPYviov4dvUwuFA316N-f3SHSrJPnx6l6Q</recordid><startdate>20150102</startdate><enddate>20150102</enddate><creator>Smith, Colin A.</creator><creator>Ban, David</creator><creator>Pratihar, Supriya</creator><creator>Giller, Karin</creator><creator>Schwiegk, Claudia</creator><creator>de Groot, Bert L.</creator><creator>Becker, Stefan</creator><creator>Griesinger, Christian</creator><creator>Lee, Donghan</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20150102</creationdate><title>Population Shuffling of Protein Conformations</title><author>Smith, Colin A. ; Ban, David ; Pratihar, Supriya ; Giller, Karin ; Schwiegk, Claudia ; de Groot, Bert L. ; Becker, Stefan ; Griesinger, Christian ; Lee, Donghan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6150-72ae9ff6e8d1cac3c962778f0786da21e7c37ec014a00f3091335f00182fa7f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amino Acid Sequence</topic><topic>Bacterial Proteins - chemistry</topic><topic>Binding</topic><topic>Chains</topic><topic>conformation</topic><topic>Crystal structure</topic><topic>Dispersions</topic><topic>Dynamics</topic><topic>Free energy</topic><topic>Ground state</topic><topic>Humans</topic><topic>Hydrophobicity</topic><topic>Immunoglobulins</topic><topic>kinetics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular Sequence Data</topic><topic>Motion</topic><topic>Nanostructure</topic><topic>Plasticity</topic><topic>Protein Conformation</topic><topic>protein dynamics</topic><topic>Protein folding</topic><topic>Protein G</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>relaxation dispersion</topic><topic>Streptococcus - chemistry</topic><topic>Thermodynamics</topic><topic>Time</topic><topic>Ubiquitin</topic><topic>Ubiquitin - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Colin A.</creatorcontrib><creatorcontrib>Ban, David</creatorcontrib><creatorcontrib>Pratihar, Supriya</creatorcontrib><creatorcontrib>Giller, Karin</creatorcontrib><creatorcontrib>Schwiegk, Claudia</creatorcontrib><creatorcontrib>de Groot, Bert L.</creatorcontrib><creatorcontrib>Becker, Stefan</creatorcontrib><creatorcontrib>Griesinger, Christian</creatorcontrib><creatorcontrib>Lee, Donghan</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Colin A.</au><au>Ban, David</au><au>Pratihar, Supriya</au><au>Giller, Karin</au><au>Schwiegk, Claudia</au><au>de Groot, Bert L.</au><au>Becker, Stefan</au><au>Griesinger, Christian</au><au>Lee, Donghan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Population Shuffling of Protein Conformations</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew. Chem. Int. Ed</addtitle><date>2015-01-02</date><risdate>2015</risdate><volume>54</volume><issue>1</issue><spage>207</spage><epage>210</epage><pages>207-210</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>Motions play a vital role in the functions of many proteins. Discrete conformational transitions to excited states, happening on timescales of hundreds of microseconds, have been extensively characterized. On the other hand, the dynamics of the ground state are widely unexplored. Newly developed high‐power relaxation dispersion experiments allow the detection of motions up to a one‐digit microsecond timescale. These experiments showed that side chains in the hydrophobic core as well as at protein–protein interaction surfaces of both ubiquitin and the third immunoglobulin binding domain of protein G move on the microsecond timescale. Both proteins exhibit plasticity to this microsecond motion through redistribution of the populations of their side‐chain rotamers, which interconvert on the picosecond to nanosecond timescale, making it likely that this “population shuffling” process is a general mechanism. Connection of motions at different timescales: Slow motions alter the free energies, and thus populations, of protein side‐chain conformations, which themselves interconvert on much faster timescales. The detection of these motions was enabled by advancements in relaxation dispersion experiments, that allow the measurement of motions as fast as 3.4 μs.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>25377083</pmid><doi>10.1002/anie.201408890</doi><tpages>4</tpages><edition>International ed. in English</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2015-01, Vol.54 (1), p.207-210
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_1700991741
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Amino Acid Sequence
Bacterial Proteins - chemistry
Binding
Chains
conformation
Crystal structure
Dispersions
Dynamics
Free energy
Ground state
Humans
Hydrophobicity
Immunoglobulins
kinetics
Molecular Dynamics Simulation
Molecular Sequence Data
Motion
Nanostructure
Plasticity
Protein Conformation
protein dynamics
Protein folding
Protein G
Protein Structure, Tertiary
Proteins
relaxation dispersion
Streptococcus - chemistry
Thermodynamics
Time
Ubiquitin
Ubiquitin - chemistry
title Population Shuffling of Protein Conformations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T13%3A24%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Population%20Shuffling%20of%20Protein%20Conformations&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Smith,%20Colin%20A.&rft.date=2015-01-02&rft.volume=54&rft.issue=1&rft.spage=207&rft.epage=210&rft.pages=207-210&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201408890&rft_dat=%3Cproquest_cross%3E3539618991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1640860918&rft_id=info:pmid/25377083&rfr_iscdi=true