Population Shuffling of Protein Conformations
Motions play a vital role in the functions of many proteins. Discrete conformational transitions to excited states, happening on timescales of hundreds of microseconds, have been extensively characterized. On the other hand, the dynamics of the ground state are widely unexplored. Newly developed hig...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2015-01, Vol.54 (1), p.207-210 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 210 |
---|---|
container_issue | 1 |
container_start_page | 207 |
container_title | Angewandte Chemie International Edition |
container_volume | 54 |
creator | Smith, Colin A. Ban, David Pratihar, Supriya Giller, Karin Schwiegk, Claudia de Groot, Bert L. Becker, Stefan Griesinger, Christian Lee, Donghan |
description | Motions play a vital role in the functions of many proteins. Discrete conformational transitions to excited states, happening on timescales of hundreds of microseconds, have been extensively characterized. On the other hand, the dynamics of the ground state are widely unexplored. Newly developed high‐power relaxation dispersion experiments allow the detection of motions up to a one‐digit microsecond timescale. These experiments showed that side chains in the hydrophobic core as well as at protein–protein interaction surfaces of both ubiquitin and the third immunoglobulin binding domain of protein G move on the microsecond timescale. Both proteins exhibit plasticity to this microsecond motion through redistribution of the populations of their side‐chain rotamers, which interconvert on the picosecond to nanosecond timescale, making it likely that this “population shuffling” process is a general mechanism.
Connection of motions at different timescales: Slow motions alter the free energies, and thus populations, of protein side‐chain conformations, which themselves interconvert on much faster timescales. The detection of these motions was enabled by advancements in relaxation dispersion experiments, that allow the measurement of motions as fast as 3.4 μs. |
doi_str_mv | 10.1002/anie.201408890 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1700991741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3539618991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6150-72ae9ff6e8d1cac3c962778f0786da21e7c37ec014a00f3091335f00182fa7f53</originalsourceid><addsrcrecordid>eNqF0TtPwzAUBWALgSivlRFVYmFJuddObGesKl6ilEoUMVomtSEljYvdCPj3uLRUiAEme_ju0bUPIYcIHQSgp7ouTYcCpiBlDhtkBzOKCROCbcZ7ylgiZIYtshvCJHopgW-TFs2iAMl2SDJ0s6bS89LV7bvnxtqqrJ_azraH3s1NWbd7rrbOT79E2CdbVlfBHKzOPXJ_fjbqXSb924urXrefFBwzSATVJreWGznGQhesyDkVQloQko81RSMKJkwRt9YAlkGOjGUWACW1WtiM7ZGTZe7Mu9fGhLmalqEwVaVr45qgUADkOYoU_6c8pRyZyNJIj3_RiWt8HR-iaMY5xs-h8i8Vs0DyuO5CdZaq8C4Eb6ya-XKq_YdCUItm1KIZtW4mDhytYpvHqRmv-XcVEeRL8FZW5uOfONUdXJ39DE-Ws2WYm_f1rPYviov4dvUwuFA316N-f3SHSrJPnx6l6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1640860918</pqid></control><display><type>article</type><title>Population Shuffling of Protein Conformations</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Smith, Colin A. ; Ban, David ; Pratihar, Supriya ; Giller, Karin ; Schwiegk, Claudia ; de Groot, Bert L. ; Becker, Stefan ; Griesinger, Christian ; Lee, Donghan</creator><creatorcontrib>Smith, Colin A. ; Ban, David ; Pratihar, Supriya ; Giller, Karin ; Schwiegk, Claudia ; de Groot, Bert L. ; Becker, Stefan ; Griesinger, Christian ; Lee, Donghan</creatorcontrib><description>Motions play a vital role in the functions of many proteins. Discrete conformational transitions to excited states, happening on timescales of hundreds of microseconds, have been extensively characterized. On the other hand, the dynamics of the ground state are widely unexplored. Newly developed high‐power relaxation dispersion experiments allow the detection of motions up to a one‐digit microsecond timescale. These experiments showed that side chains in the hydrophobic core as well as at protein–protein interaction surfaces of both ubiquitin and the third immunoglobulin binding domain of protein G move on the microsecond timescale. Both proteins exhibit plasticity to this microsecond motion through redistribution of the populations of their side‐chain rotamers, which interconvert on the picosecond to nanosecond timescale, making it likely that this “population shuffling” process is a general mechanism.
Connection of motions at different timescales: Slow motions alter the free energies, and thus populations, of protein side‐chain conformations, which themselves interconvert on much faster timescales. The detection of these motions was enabled by advancements in relaxation dispersion experiments, that allow the measurement of motions as fast as 3.4 μs.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201408890</identifier><identifier>PMID: 25377083</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Amino Acid Sequence ; Bacterial Proteins - chemistry ; Binding ; Chains ; conformation ; Crystal structure ; Dispersions ; Dynamics ; Free energy ; Ground state ; Humans ; Hydrophobicity ; Immunoglobulins ; kinetics ; Molecular Dynamics Simulation ; Molecular Sequence Data ; Motion ; Nanostructure ; Plasticity ; Protein Conformation ; protein dynamics ; Protein folding ; Protein G ; Protein Structure, Tertiary ; Proteins ; relaxation dispersion ; Streptococcus - chemistry ; Thermodynamics ; Time ; Ubiquitin ; Ubiquitin - chemistry</subject><ispartof>Angewandte Chemie International Edition, 2015-01, Vol.54 (1), p.207-210</ispartof><rights>2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright Wiley Subscription Services, Inc. Jan 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6150-72ae9ff6e8d1cac3c962778f0786da21e7c37ec014a00f3091335f00182fa7f53</citedby><cites>FETCH-LOGICAL-c6150-72ae9ff6e8d1cac3c962778f0786da21e7c37ec014a00f3091335f00182fa7f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201408890$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201408890$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25377083$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, Colin A.</creatorcontrib><creatorcontrib>Ban, David</creatorcontrib><creatorcontrib>Pratihar, Supriya</creatorcontrib><creatorcontrib>Giller, Karin</creatorcontrib><creatorcontrib>Schwiegk, Claudia</creatorcontrib><creatorcontrib>de Groot, Bert L.</creatorcontrib><creatorcontrib>Becker, Stefan</creatorcontrib><creatorcontrib>Griesinger, Christian</creatorcontrib><creatorcontrib>Lee, Donghan</creatorcontrib><title>Population Shuffling of Protein Conformations</title><title>Angewandte Chemie International Edition</title><addtitle>Angew. Chem. Int. Ed</addtitle><description>Motions play a vital role in the functions of many proteins. Discrete conformational transitions to excited states, happening on timescales of hundreds of microseconds, have been extensively characterized. On the other hand, the dynamics of the ground state are widely unexplored. Newly developed high‐power relaxation dispersion experiments allow the detection of motions up to a one‐digit microsecond timescale. These experiments showed that side chains in the hydrophobic core as well as at protein–protein interaction surfaces of both ubiquitin and the third immunoglobulin binding domain of protein G move on the microsecond timescale. Both proteins exhibit plasticity to this microsecond motion through redistribution of the populations of their side‐chain rotamers, which interconvert on the picosecond to nanosecond timescale, making it likely that this “population shuffling” process is a general mechanism.
Connection of motions at different timescales: Slow motions alter the free energies, and thus populations, of protein side‐chain conformations, which themselves interconvert on much faster timescales. The detection of these motions was enabled by advancements in relaxation dispersion experiments, that allow the measurement of motions as fast as 3.4 μs.</description><subject>Amino Acid Sequence</subject><subject>Bacterial Proteins - chemistry</subject><subject>Binding</subject><subject>Chains</subject><subject>conformation</subject><subject>Crystal structure</subject><subject>Dispersions</subject><subject>Dynamics</subject><subject>Free energy</subject><subject>Ground state</subject><subject>Humans</subject><subject>Hydrophobicity</subject><subject>Immunoglobulins</subject><subject>kinetics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular Sequence Data</subject><subject>Motion</subject><subject>Nanostructure</subject><subject>Plasticity</subject><subject>Protein Conformation</subject><subject>protein dynamics</subject><subject>Protein folding</subject><subject>Protein G</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>relaxation dispersion</subject><subject>Streptococcus - chemistry</subject><subject>Thermodynamics</subject><subject>Time</subject><subject>Ubiquitin</subject><subject>Ubiquitin - chemistry</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0TtPwzAUBWALgSivlRFVYmFJuddObGesKl6ilEoUMVomtSEljYvdCPj3uLRUiAEme_ju0bUPIYcIHQSgp7ouTYcCpiBlDhtkBzOKCROCbcZ7ylgiZIYtshvCJHopgW-TFs2iAMl2SDJ0s6bS89LV7bvnxtqqrJ_azraH3s1NWbd7rrbOT79E2CdbVlfBHKzOPXJ_fjbqXSb924urXrefFBwzSATVJreWGznGQhesyDkVQloQko81RSMKJkwRt9YAlkGOjGUWACW1WtiM7ZGTZe7Mu9fGhLmalqEwVaVr45qgUADkOYoU_6c8pRyZyNJIj3_RiWt8HR-iaMY5xs-h8i8Vs0DyuO5CdZaq8C4Eb6ya-XKq_YdCUItm1KIZtW4mDhytYpvHqRmv-XcVEeRL8FZW5uOfONUdXJ39DE-Ws2WYm_f1rPYviov4dvUwuFA316N-f3SHSrJPnx6l6Q</recordid><startdate>20150102</startdate><enddate>20150102</enddate><creator>Smith, Colin A.</creator><creator>Ban, David</creator><creator>Pratihar, Supriya</creator><creator>Giller, Karin</creator><creator>Schwiegk, Claudia</creator><creator>de Groot, Bert L.</creator><creator>Becker, Stefan</creator><creator>Griesinger, Christian</creator><creator>Lee, Donghan</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20150102</creationdate><title>Population Shuffling of Protein Conformations</title><author>Smith, Colin A. ; Ban, David ; Pratihar, Supriya ; Giller, Karin ; Schwiegk, Claudia ; de Groot, Bert L. ; Becker, Stefan ; Griesinger, Christian ; Lee, Donghan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6150-72ae9ff6e8d1cac3c962778f0786da21e7c37ec014a00f3091335f00182fa7f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amino Acid Sequence</topic><topic>Bacterial Proteins - chemistry</topic><topic>Binding</topic><topic>Chains</topic><topic>conformation</topic><topic>Crystal structure</topic><topic>Dispersions</topic><topic>Dynamics</topic><topic>Free energy</topic><topic>Ground state</topic><topic>Humans</topic><topic>Hydrophobicity</topic><topic>Immunoglobulins</topic><topic>kinetics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular Sequence Data</topic><topic>Motion</topic><topic>Nanostructure</topic><topic>Plasticity</topic><topic>Protein Conformation</topic><topic>protein dynamics</topic><topic>Protein folding</topic><topic>Protein G</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>relaxation dispersion</topic><topic>Streptococcus - chemistry</topic><topic>Thermodynamics</topic><topic>Time</topic><topic>Ubiquitin</topic><topic>Ubiquitin - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Colin A.</creatorcontrib><creatorcontrib>Ban, David</creatorcontrib><creatorcontrib>Pratihar, Supriya</creatorcontrib><creatorcontrib>Giller, Karin</creatorcontrib><creatorcontrib>Schwiegk, Claudia</creatorcontrib><creatorcontrib>de Groot, Bert L.</creatorcontrib><creatorcontrib>Becker, Stefan</creatorcontrib><creatorcontrib>Griesinger, Christian</creatorcontrib><creatorcontrib>Lee, Donghan</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Colin A.</au><au>Ban, David</au><au>Pratihar, Supriya</au><au>Giller, Karin</au><au>Schwiegk, Claudia</au><au>de Groot, Bert L.</au><au>Becker, Stefan</au><au>Griesinger, Christian</au><au>Lee, Donghan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Population Shuffling of Protein Conformations</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew. Chem. Int. Ed</addtitle><date>2015-01-02</date><risdate>2015</risdate><volume>54</volume><issue>1</issue><spage>207</spage><epage>210</epage><pages>207-210</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>Motions play a vital role in the functions of many proteins. Discrete conformational transitions to excited states, happening on timescales of hundreds of microseconds, have been extensively characterized. On the other hand, the dynamics of the ground state are widely unexplored. Newly developed high‐power relaxation dispersion experiments allow the detection of motions up to a one‐digit microsecond timescale. These experiments showed that side chains in the hydrophobic core as well as at protein–protein interaction surfaces of both ubiquitin and the third immunoglobulin binding domain of protein G move on the microsecond timescale. Both proteins exhibit plasticity to this microsecond motion through redistribution of the populations of their side‐chain rotamers, which interconvert on the picosecond to nanosecond timescale, making it likely that this “population shuffling” process is a general mechanism.
Connection of motions at different timescales: Slow motions alter the free energies, and thus populations, of protein side‐chain conformations, which themselves interconvert on much faster timescales. The detection of these motions was enabled by advancements in relaxation dispersion experiments, that allow the measurement of motions as fast as 3.4 μs.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>25377083</pmid><doi>10.1002/anie.201408890</doi><tpages>4</tpages><edition>International ed. in English</edition><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2015-01, Vol.54 (1), p.207-210 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_1700991741 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Amino Acid Sequence Bacterial Proteins - chemistry Binding Chains conformation Crystal structure Dispersions Dynamics Free energy Ground state Humans Hydrophobicity Immunoglobulins kinetics Molecular Dynamics Simulation Molecular Sequence Data Motion Nanostructure Plasticity Protein Conformation protein dynamics Protein folding Protein G Protein Structure, Tertiary Proteins relaxation dispersion Streptococcus - chemistry Thermodynamics Time Ubiquitin Ubiquitin - chemistry |
title | Population Shuffling of Protein Conformations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T13%3A24%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Population%20Shuffling%20of%20Protein%20Conformations&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Smith,%20Colin%20A.&rft.date=2015-01-02&rft.volume=54&rft.issue=1&rft.spage=207&rft.epage=210&rft.pages=207-210&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201408890&rft_dat=%3Cproquest_cross%3E3539618991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1640860918&rft_id=info:pmid/25377083&rfr_iscdi=true |