Bifunctional Submicron Colloidosomes Coassembled from Fluorescent and Superparamagnetic Nanoparticles

Colloidosomes are microcapsules consisting of nanoparticle shells. These microcarriers can be self‐assembled from a wide range of colloidal particles with selective chemical, physical, and morphological properties and show promise for application in the field of theranostic nanomedicine. Previous st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2015-01, Vol.54 (1), p.118-123
Hauptverfasser: Bollhorst, Tobias, Shahabi, Shakiba, Wörz, Katharina, Petters, Charlotte, Dringen, Ralf, Maas, Michael, Rezwan, Kurosch
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 123
container_issue 1
container_start_page 118
container_title Angewandte Chemie International Edition
container_volume 54
creator Bollhorst, Tobias
Shahabi, Shakiba
Wörz, Katharina
Petters, Charlotte
Dringen, Ralf
Maas, Michael
Rezwan, Kurosch
description Colloidosomes are microcapsules consisting of nanoparticle shells. These microcarriers can be self‐assembled from a wide range of colloidal particles with selective chemical, physical, and morphological properties and show promise for application in the field of theranostic nanomedicine. Previous studies have mainly focused on fairly large colloidosomes (>1 μm) based on a single kind of particle; however, the intrinsic building‐block nature of this microcarrier has not been exploited so far for the introduction of tailored functionality at the nanoscale. We report a synthetic route based on interfacial shear rheology studies that allows the simultaneous incorporation of different nanoparticles with distinct physical properties, that is, superparamagnetic iron oxide and fluorescent silica nanoparticles, in a single submicron colloidosome. These tailor‐made microcapsules can potentially be used in various biomedical applications, including magnetic hyperthermia, magnetic particle imaging, drug targeting, and bioimaging. Outwardly functional but empty inside: Bifunctional submicron colloidosomes (see picture) were coassembled from superparamagnetic iron oxide nanoparticles (SPIONs) and fluorescent‐dye‐doped silica nanoparticles (FSNPs) at the interface between water‐in‐oil‐emulsion droplets and then transferred by centrifugation to a fresh aqueous phase. These inherently rigid microcapsules feature a nanoporous shell and an aqueous core for active‐agent encapsulation.
doi_str_mv 10.1002/anie.201408515
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1700991172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566188118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5755-3eb47c7646b0e69c71bd981037aa14e1c5f6b6df442c3efcabdc71796168fff83</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxSMEoh9w5Ygicekliyf-zLFdtaWiWiQo4mg5zhi5OPFiJ4L-93W1ZYU40NPM2L_3NJpXVW-ArICQ9r2ZPK5aAowoDvxZdQi8hYZKSZ-XnlHayPJxUB3lfFt4pYh4WR20nErCRHtY4Zl3y2RnHycT6i9LP3qb4lSvYwjRDzHHEXOZTM449gGH2qU41hdhiQmzxWmuzTQU4RbT1iQzmu8Tzt7WGzPF8lDagPlV9cKZkPH1Yz2uvl6c36w_NNefLq_Wp9eN5ZLzhmLPpJWCiZ6g6KyEfugUECqNAYZguRO9GBxjraXorOmHwshOgFDOOUWPq5Od7zbFnwvmWY--LBmCmTAuWYMkpOsAZPs0KlgrgLWdLOi7f9DbuKRyr6xbLgQoBaD-RxUvogQQwQu12lHlyjkndHqb_GjSnQaiHxLVD4nqfaJF8PbRtmSDwx7_E2EBuh3wywe8e8JOn26uzv82b3Zan2f8vdea9EMLSSXX3zaXet19vtlw8lGf0XvUtLxG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1640861065</pqid></control><display><type>article</type><title>Bifunctional Submicron Colloidosomes Coassembled from Fluorescent and Superparamagnetic Nanoparticles</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bollhorst, Tobias ; Shahabi, Shakiba ; Wörz, Katharina ; Petters, Charlotte ; Dringen, Ralf ; Maas, Michael ; Rezwan, Kurosch</creator><creatorcontrib>Bollhorst, Tobias ; Shahabi, Shakiba ; Wörz, Katharina ; Petters, Charlotte ; Dringen, Ralf ; Maas, Michael ; Rezwan, Kurosch</creatorcontrib><description>Colloidosomes are microcapsules consisting of nanoparticle shells. These microcarriers can be self‐assembled from a wide range of colloidal particles with selective chemical, physical, and morphological properties and show promise for application in the field of theranostic nanomedicine. Previous studies have mainly focused on fairly large colloidosomes (&gt;1 μm) based on a single kind of particle; however, the intrinsic building‐block nature of this microcarrier has not been exploited so far for the introduction of tailored functionality at the nanoscale. We report a synthetic route based on interfacial shear rheology studies that allows the simultaneous incorporation of different nanoparticles with distinct physical properties, that is, superparamagnetic iron oxide and fluorescent silica nanoparticles, in a single submicron colloidosome. These tailor‐made microcapsules can potentially be used in various biomedical applications, including magnetic hyperthermia, magnetic particle imaging, drug targeting, and bioimaging. Outwardly functional but empty inside: Bifunctional submicron colloidosomes (see picture) were coassembled from superparamagnetic iron oxide nanoparticles (SPIONs) and fluorescent‐dye‐doped silica nanoparticles (FSNPs) at the interface between water‐in‐oil‐emulsion droplets and then transferred by centrifugation to a fresh aqueous phase. These inherently rigid microcapsules feature a nanoporous shell and an aqueous core for active‐agent encapsulation.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201408515</identifier><identifier>PMID: 25370462</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Biomedical materials ; colloidosomes ; Colloids ; Colloids - chemistry ; Construction ; Dextrans - chemistry ; Droplets ; Encapsulation ; Equipment Design ; Fluorescence ; Fluorescent Dyes - chemistry ; Hyperthermia ; interfacial shear rheology ; Iron oxides ; Magnetics ; Magnetite Nanoparticles - chemistry ; Magnets - chemistry ; Medical imaging ; Microcapsules ; Models, Molecular ; Nanomedicine ; Nanoparticles ; Nanoparticles - chemistry ; Nanoparticles - ultrastructure ; Nanostructure ; Nanotechnology ; Nanotechnology - instrumentation ; Nanotechnology - methods ; Particle Size ; Physical properties ; Rheological properties ; Rheology ; Rheology - instrumentation ; Rheology - methods ; Silica ; Silicon dioxide ; Silicon Dioxide - chemistry ; superparamagnetism ; theranostics ; Therapeutic targets</subject><ispartof>Angewandte Chemie International Edition, 2015-01, Vol.54 (1), p.118-123</ispartof><rights>2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright Wiley Subscription Services, Inc. Jan 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5755-3eb47c7646b0e69c71bd981037aa14e1c5f6b6df442c3efcabdc71796168fff83</citedby><cites>FETCH-LOGICAL-c5755-3eb47c7646b0e69c71bd981037aa14e1c5f6b6df442c3efcabdc71796168fff83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201408515$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201408515$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25370462$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bollhorst, Tobias</creatorcontrib><creatorcontrib>Shahabi, Shakiba</creatorcontrib><creatorcontrib>Wörz, Katharina</creatorcontrib><creatorcontrib>Petters, Charlotte</creatorcontrib><creatorcontrib>Dringen, Ralf</creatorcontrib><creatorcontrib>Maas, Michael</creatorcontrib><creatorcontrib>Rezwan, Kurosch</creatorcontrib><title>Bifunctional Submicron Colloidosomes Coassembled from Fluorescent and Superparamagnetic Nanoparticles</title><title>Angewandte Chemie International Edition</title><addtitle>Angew. Chem. Int. Ed</addtitle><description>Colloidosomes are microcapsules consisting of nanoparticle shells. These microcarriers can be self‐assembled from a wide range of colloidal particles with selective chemical, physical, and morphological properties and show promise for application in the field of theranostic nanomedicine. Previous studies have mainly focused on fairly large colloidosomes (&gt;1 μm) based on a single kind of particle; however, the intrinsic building‐block nature of this microcarrier has not been exploited so far for the introduction of tailored functionality at the nanoscale. We report a synthetic route based on interfacial shear rheology studies that allows the simultaneous incorporation of different nanoparticles with distinct physical properties, that is, superparamagnetic iron oxide and fluorescent silica nanoparticles, in a single submicron colloidosome. These tailor‐made microcapsules can potentially be used in various biomedical applications, including magnetic hyperthermia, magnetic particle imaging, drug targeting, and bioimaging. Outwardly functional but empty inside: Bifunctional submicron colloidosomes (see picture) were coassembled from superparamagnetic iron oxide nanoparticles (SPIONs) and fluorescent‐dye‐doped silica nanoparticles (FSNPs) at the interface between water‐in‐oil‐emulsion droplets and then transferred by centrifugation to a fresh aqueous phase. These inherently rigid microcapsules feature a nanoporous shell and an aqueous core for active‐agent encapsulation.</description><subject>Biomedical materials</subject><subject>colloidosomes</subject><subject>Colloids</subject><subject>Colloids - chemistry</subject><subject>Construction</subject><subject>Dextrans - chemistry</subject><subject>Droplets</subject><subject>Encapsulation</subject><subject>Equipment Design</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Hyperthermia</subject><subject>interfacial shear rheology</subject><subject>Iron oxides</subject><subject>Magnetics</subject><subject>Magnetite Nanoparticles - chemistry</subject><subject>Magnets - chemistry</subject><subject>Medical imaging</subject><subject>Microcapsules</subject><subject>Models, Molecular</subject><subject>Nanomedicine</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - ultrastructure</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Nanotechnology - instrumentation</subject><subject>Nanotechnology - methods</subject><subject>Particle Size</subject><subject>Physical properties</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Rheology - instrumentation</subject><subject>Rheology - methods</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Silicon Dioxide - chemistry</subject><subject>superparamagnetism</subject><subject>theranostics</subject><subject>Therapeutic targets</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxSMEoh9w5Ygicekliyf-zLFdtaWiWiQo4mg5zhi5OPFiJ4L-93W1ZYU40NPM2L_3NJpXVW-ArICQ9r2ZPK5aAowoDvxZdQi8hYZKSZ-XnlHayPJxUB3lfFt4pYh4WR20nErCRHtY4Zl3y2RnHycT6i9LP3qb4lSvYwjRDzHHEXOZTM449gGH2qU41hdhiQmzxWmuzTQU4RbT1iQzmu8Tzt7WGzPF8lDagPlV9cKZkPH1Yz2uvl6c36w_NNefLq_Wp9eN5ZLzhmLPpJWCiZ6g6KyEfugUECqNAYZguRO9GBxjraXorOmHwshOgFDOOUWPq5Od7zbFnwvmWY--LBmCmTAuWYMkpOsAZPs0KlgrgLWdLOi7f9DbuKRyr6xbLgQoBaD-RxUvogQQwQu12lHlyjkndHqb_GjSnQaiHxLVD4nqfaJF8PbRtmSDwx7_E2EBuh3wywe8e8JOn26uzv82b3Zan2f8vdea9EMLSSXX3zaXet19vtlw8lGf0XvUtLxG</recordid><startdate>20150102</startdate><enddate>20150102</enddate><creator>Bollhorst, Tobias</creator><creator>Shahabi, Shakiba</creator><creator>Wörz, Katharina</creator><creator>Petters, Charlotte</creator><creator>Dringen, Ralf</creator><creator>Maas, Michael</creator><creator>Rezwan, Kurosch</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150102</creationdate><title>Bifunctional Submicron Colloidosomes Coassembled from Fluorescent and Superparamagnetic Nanoparticles</title><author>Bollhorst, Tobias ; Shahabi, Shakiba ; Wörz, Katharina ; Petters, Charlotte ; Dringen, Ralf ; Maas, Michael ; Rezwan, Kurosch</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5755-3eb47c7646b0e69c71bd981037aa14e1c5f6b6df442c3efcabdc71796168fff83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biomedical materials</topic><topic>colloidosomes</topic><topic>Colloids</topic><topic>Colloids - chemistry</topic><topic>Construction</topic><topic>Dextrans - chemistry</topic><topic>Droplets</topic><topic>Encapsulation</topic><topic>Equipment Design</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Hyperthermia</topic><topic>interfacial shear rheology</topic><topic>Iron oxides</topic><topic>Magnetics</topic><topic>Magnetite Nanoparticles - chemistry</topic><topic>Magnets - chemistry</topic><topic>Medical imaging</topic><topic>Microcapsules</topic><topic>Models, Molecular</topic><topic>Nanomedicine</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - ultrastructure</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Nanotechnology - instrumentation</topic><topic>Nanotechnology - methods</topic><topic>Particle Size</topic><topic>Physical properties</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Rheology - instrumentation</topic><topic>Rheology - methods</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Silicon Dioxide - chemistry</topic><topic>superparamagnetism</topic><topic>theranostics</topic><topic>Therapeutic targets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bollhorst, Tobias</creatorcontrib><creatorcontrib>Shahabi, Shakiba</creatorcontrib><creatorcontrib>Wörz, Katharina</creatorcontrib><creatorcontrib>Petters, Charlotte</creatorcontrib><creatorcontrib>Dringen, Ralf</creatorcontrib><creatorcontrib>Maas, Michael</creatorcontrib><creatorcontrib>Rezwan, Kurosch</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bollhorst, Tobias</au><au>Shahabi, Shakiba</au><au>Wörz, Katharina</au><au>Petters, Charlotte</au><au>Dringen, Ralf</au><au>Maas, Michael</au><au>Rezwan, Kurosch</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bifunctional Submicron Colloidosomes Coassembled from Fluorescent and Superparamagnetic Nanoparticles</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew. Chem. Int. Ed</addtitle><date>2015-01-02</date><risdate>2015</risdate><volume>54</volume><issue>1</issue><spage>118</spage><epage>123</epage><pages>118-123</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>Colloidosomes are microcapsules consisting of nanoparticle shells. These microcarriers can be self‐assembled from a wide range of colloidal particles with selective chemical, physical, and morphological properties and show promise for application in the field of theranostic nanomedicine. Previous studies have mainly focused on fairly large colloidosomes (&gt;1 μm) based on a single kind of particle; however, the intrinsic building‐block nature of this microcarrier has not been exploited so far for the introduction of tailored functionality at the nanoscale. We report a synthetic route based on interfacial shear rheology studies that allows the simultaneous incorporation of different nanoparticles with distinct physical properties, that is, superparamagnetic iron oxide and fluorescent silica nanoparticles, in a single submicron colloidosome. These tailor‐made microcapsules can potentially be used in various biomedical applications, including magnetic hyperthermia, magnetic particle imaging, drug targeting, and bioimaging. Outwardly functional but empty inside: Bifunctional submicron colloidosomes (see picture) were coassembled from superparamagnetic iron oxide nanoparticles (SPIONs) and fluorescent‐dye‐doped silica nanoparticles (FSNPs) at the interface between water‐in‐oil‐emulsion droplets and then transferred by centrifugation to a fresh aqueous phase. These inherently rigid microcapsules feature a nanoporous shell and an aqueous core for active‐agent encapsulation.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>25370462</pmid><doi>10.1002/anie.201408515</doi><tpages>6</tpages><edition>International ed. in English</edition></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2015-01, Vol.54 (1), p.118-123
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_1700991172
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Biomedical materials
colloidosomes
Colloids
Colloids - chemistry
Construction
Dextrans - chemistry
Droplets
Encapsulation
Equipment Design
Fluorescence
Fluorescent Dyes - chemistry
Hyperthermia
interfacial shear rheology
Iron oxides
Magnetics
Magnetite Nanoparticles - chemistry
Magnets - chemistry
Medical imaging
Microcapsules
Models, Molecular
Nanomedicine
Nanoparticles
Nanoparticles - chemistry
Nanoparticles - ultrastructure
Nanostructure
Nanotechnology
Nanotechnology - instrumentation
Nanotechnology - methods
Particle Size
Physical properties
Rheological properties
Rheology
Rheology - instrumentation
Rheology - methods
Silica
Silicon dioxide
Silicon Dioxide - chemistry
superparamagnetism
theranostics
Therapeutic targets
title Bifunctional Submicron Colloidosomes Coassembled from Fluorescent and Superparamagnetic Nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A38%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bifunctional%20Submicron%20Colloidosomes%20Coassembled%20from%20Fluorescent%20and%20Superparamagnetic%20Nanoparticles&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Bollhorst,%20Tobias&rft.date=2015-01-02&rft.volume=54&rft.issue=1&rft.spage=118&rft.epage=123&rft.pages=118-123&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201408515&rft_dat=%3Cproquest_cross%3E2566188118%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1640861065&rft_id=info:pmid/25370462&rfr_iscdi=true