Wind power chaos prediction based on Volterra adaptive filter
It is significant to forecast short-term generated power of wind farm for the security, stability and economic operation of the power grid with wind farm connected. This paper reconstructs the phase space for the wind generated power time series by using the C-C algorithm, and proves that the wind g...
Gespeichert in:
Veröffentlicht in: | Dianli Xitong Baohu yu Kongzhi 2012-02, Vol.40 (4), p.90-95 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 95 |
---|---|
container_issue | 4 |
container_start_page | 90 |
container_title | Dianli Xitong Baohu yu Kongzhi |
container_volume | 40 |
creator | Meng, Yang-Yang Lu, Ji-Ping Wang, Jian Qiao, Liang Zhang, Yi-Yang Li, Hui |
description | It is significant to forecast short-term generated power of wind farm for the security, stability and economic operation of the power grid with wind farm connected. This paper reconstructs the phase space for the wind generated power time series by using the C-C algorithm, and proves that the wind generated power time series has the chaotic characteristics through calculating the largest Lyapunov index. Different order of Volterra adaptive filters are used to forecast short-time wind generated power. Two different wind farms are used to verify the method, and the analysis results show that the results forecasted by the designed forecasting model can reflect future changes trend of wind generated power and possess high accuracy, while different order of Volterra adaptive filters has different accuracy, the lower the order is, the higher the accuracy is. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1700990603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1019655766</sourcerecordid><originalsourceid>FETCH-LOGICAL-p136t-278a888983e4f8f029a7e5a3e521d2f2d07db9f80220de85d79a10c55fdd5d743</originalsourceid><addsrcrecordid>eNqFjDtPwzAUhT2ARFX6HzyyRLq249fAgCpeUiWWAmN1k3stLIU4xCn8fYpgZzrnO_p0zsRKOd82plX2QmxqzR2AUda6EFfi-jWPJKfyxbPs37BUOc1MuV9yGWWHlUmeyksZFp5nlEg4LfmTZco_y6U4TzhU3vzlWjzf3e63D83u6f5xe7NrJmXc0mgfMIQQg-E2hQQ6omeLhq1WpJMm8NTFFEBrIA6WfEQFvbWJ6AStWYur399pLh9HrsvhPdeehwFHLsd6UB4gRnBg_ldBRWetd858A0qDU9E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019655766</pqid></control><display><type>article</type><title>Wind power chaos prediction based on Volterra adaptive filter</title><source>DOAJ Directory of Open Access Journals</source><creator>Meng, Yang-Yang ; Lu, Ji-Ping ; Wang, Jian ; Qiao, Liang ; Zhang, Yi-Yang ; Li, Hui</creator><creatorcontrib>Meng, Yang-Yang ; Lu, Ji-Ping ; Wang, Jian ; Qiao, Liang ; Zhang, Yi-Yang ; Li, Hui</creatorcontrib><description>It is significant to forecast short-term generated power of wind farm for the security, stability and economic operation of the power grid with wind farm connected. This paper reconstructs the phase space for the wind generated power time series by using the C-C algorithm, and proves that the wind generated power time series has the chaotic characteristics through calculating the largest Lyapunov index. Different order of Volterra adaptive filters are used to forecast short-time wind generated power. Two different wind farms are used to verify the method, and the analysis results show that the results forecasted by the designed forecasting model can reflect future changes trend of wind generated power and possess high accuracy, while different order of Volterra adaptive filters has different accuracy, the lower the order is, the higher the accuracy is.</description><identifier>ISSN: 1674-3415</identifier><language>chi</language><subject>Accuracy ; Adaptive filters ; Carbon-carbon composites ; Chaos theory ; Economics ; Mathematical models ; Time series ; Wind power generation</subject><ispartof>Dianli Xitong Baohu yu Kongzhi, 2012-02, Vol.40 (4), p.90-95</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Meng, Yang-Yang</creatorcontrib><creatorcontrib>Lu, Ji-Ping</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Qiao, Liang</creatorcontrib><creatorcontrib>Zhang, Yi-Yang</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><title>Wind power chaos prediction based on Volterra adaptive filter</title><title>Dianli Xitong Baohu yu Kongzhi</title><description>It is significant to forecast short-term generated power of wind farm for the security, stability and economic operation of the power grid with wind farm connected. This paper reconstructs the phase space for the wind generated power time series by using the C-C algorithm, and proves that the wind generated power time series has the chaotic characteristics through calculating the largest Lyapunov index. Different order of Volterra adaptive filters are used to forecast short-time wind generated power. Two different wind farms are used to verify the method, and the analysis results show that the results forecasted by the designed forecasting model can reflect future changes trend of wind generated power and possess high accuracy, while different order of Volterra adaptive filters has different accuracy, the lower the order is, the higher the accuracy is.</description><subject>Accuracy</subject><subject>Adaptive filters</subject><subject>Carbon-carbon composites</subject><subject>Chaos theory</subject><subject>Economics</subject><subject>Mathematical models</subject><subject>Time series</subject><subject>Wind power generation</subject><issn>1674-3415</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFjDtPwzAUhT2ARFX6HzyyRLq249fAgCpeUiWWAmN1k3stLIU4xCn8fYpgZzrnO_p0zsRKOd82plX2QmxqzR2AUda6EFfi-jWPJKfyxbPs37BUOc1MuV9yGWWHlUmeyksZFp5nlEg4LfmTZco_y6U4TzhU3vzlWjzf3e63D83u6f5xe7NrJmXc0mgfMIQQg-E2hQQ6omeLhq1WpJMm8NTFFEBrIA6WfEQFvbWJ6AStWYur399pLh9HrsvhPdeehwFHLsd6UB4gRnBg_ldBRWetd858A0qDU9E</recordid><startdate>20120216</startdate><enddate>20120216</enddate><creator>Meng, Yang-Yang</creator><creator>Lu, Ji-Ping</creator><creator>Wang, Jian</creator><creator>Qiao, Liang</creator><creator>Zhang, Yi-Yang</creator><creator>Li, Hui</creator><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20120216</creationdate><title>Wind power chaos prediction based on Volterra adaptive filter</title><author>Meng, Yang-Yang ; Lu, Ji-Ping ; Wang, Jian ; Qiao, Liang ; Zhang, Yi-Yang ; Li, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p136t-278a888983e4f8f029a7e5a3e521d2f2d07db9f80220de85d79a10c55fdd5d743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Adaptive filters</topic><topic>Carbon-carbon composites</topic><topic>Chaos theory</topic><topic>Economics</topic><topic>Mathematical models</topic><topic>Time series</topic><topic>Wind power generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Yang-Yang</creatorcontrib><creatorcontrib>Lu, Ji-Ping</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Qiao, Liang</creatorcontrib><creatorcontrib>Zhang, Yi-Yang</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Dianli Xitong Baohu yu Kongzhi</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Yang-Yang</au><au>Lu, Ji-Ping</au><au>Wang, Jian</au><au>Qiao, Liang</au><au>Zhang, Yi-Yang</au><au>Li, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wind power chaos prediction based on Volterra adaptive filter</atitle><jtitle>Dianli Xitong Baohu yu Kongzhi</jtitle><date>2012-02-16</date><risdate>2012</risdate><volume>40</volume><issue>4</issue><spage>90</spage><epage>95</epage><pages>90-95</pages><issn>1674-3415</issn><abstract>It is significant to forecast short-term generated power of wind farm for the security, stability and economic operation of the power grid with wind farm connected. This paper reconstructs the phase space for the wind generated power time series by using the C-C algorithm, and proves that the wind generated power time series has the chaotic characteristics through calculating the largest Lyapunov index. Different order of Volterra adaptive filters are used to forecast short-time wind generated power. Two different wind farms are used to verify the method, and the analysis results show that the results forecasted by the designed forecasting model can reflect future changes trend of wind generated power and possess high accuracy, while different order of Volterra adaptive filters has different accuracy, the lower the order is, the higher the accuracy is.</abstract><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-3415 |
ispartof | Dianli Xitong Baohu yu Kongzhi, 2012-02, Vol.40 (4), p.90-95 |
issn | 1674-3415 |
language | chi |
recordid | cdi_proquest_miscellaneous_1700990603 |
source | DOAJ Directory of Open Access Journals |
subjects | Accuracy Adaptive filters Carbon-carbon composites Chaos theory Economics Mathematical models Time series Wind power generation |
title | Wind power chaos prediction based on Volterra adaptive filter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A33%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wind%20power%20chaos%20prediction%20based%20on%20Volterra%20adaptive%20filter&rft.jtitle=Dianli%20Xitong%20Baohu%20yu%20Kongzhi&rft.au=Meng,%20Yang-Yang&rft.date=2012-02-16&rft.volume=40&rft.issue=4&rft.spage=90&rft.epage=95&rft.pages=90-95&rft.issn=1674-3415&rft_id=info:doi/&rft_dat=%3Cproquest%3E1019655766%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019655766&rft_id=info:pmid/&rfr_iscdi=true |