Quantitative Structure Relative Volatility Relationship Model for Extractive Distillation of Ethylbenzene/p‑Xylene Mixtures
Extractive distillation is a highly effective process for the separation of compound pairs having low relative volatility values, such as ethylbenzene (EB) and p-xylene (PX) mixtures. Many solvents or solvent mixtures have been screened experimentally to identify a suitable extraction agent for EB/P...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2014-07, Vol.53 (27), p.11159-11166 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11166 |
---|---|
container_issue | 27 |
container_start_page | 11159 |
container_title | Industrial & engineering chemistry research |
container_volume | 53 |
creator | Kang, Young-Mook Jeon, Yukwon Lee, Gicheon Son, Hyoungjun Row, Sung Wook Choi, Seonghwan Seo, Young-Jong Chu, Young Hwan Shin, Jae-Min Shul, Yong-Gun No, Kyoung Tai |
description | Extractive distillation is a highly effective process for the separation of compound pairs having low relative volatility values, such as ethylbenzene (EB) and p-xylene (PX) mixtures. Many solvents or solvent mixtures have been screened experimentally to identify a suitable extraction agent for EB/PX mixtures. Because the number of possible solvent and solvent mixture candidates is high, it is necessary to introduce a computer-aided extraction performance prediction technique. In this study, a knowledge-based quantitative structure relative volatility relationship (QSRVR) model was developed using multiple linear regression (MLR) and artificial neural network (ANN) models, with each model having five descriptors. The root-mean-square errors (RMSE) of the training and test sets for the MLR model were calculated as 0.01486 and 0.00905, while their squared correlation coefficients (R 2) were 0.867 and 0.941, respectively. The R 2 and RMSE values of the total data set for the MLR model were 0.878 and 0.01408, and for the ANN model the values were 0.949 and 0.00929, respectively. The predictive ability of both models is sufficient for identifying suitable extractive distillation solvents for the separation of EB/PX mixtures. |
doi_str_mv | 10.1021/ie403235r |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1700984439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1700984439</sourcerecordid><originalsourceid>FETCH-LOGICAL-a292t-da92543a5554c387d09c85d67eb11b4a902364d0edff5ee8ea2e9c769c29504a3</originalsourceid><addsrcrecordid>eNptkM1KAzEUhYMoWKsL3yAbQRdjM5mkkyxF6w-0iL-4G9LMHZoyndQkIx1B8BV8RZ_EqVNcubqHw8e95x6EDmNyGhMaDwwwktCEuy3UizklESeMb6MeEUJEXAi-i_a8nxNCOGeshz7ualUFE1Qwb4Afgqt1qB3geyg769muRWlCs_Fs5WdmiSc2hxIX1uHRKjilf-EL41u2o7At8CjMmnIK1TtUMFh-f369NGUr8cSs1lf8PtopVOnhYDP76Oly9Hh-HY1vr27Oz8aRopKGKFeScpYo3mbWiUhzIrXg-TCFaRxPmZKEJkOWE8iLggMIUBSkTodSU9n-r5I-Ou72Lp19rcGHbGG8hjZpBbb2WZwSIgVjiWzRkw7VznrvoMiWziyUa7KYZOuKs7-KW_aoY5X22dzWrmqf-If7AQVbfrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1700984439</pqid></control><display><type>article</type><title>Quantitative Structure Relative Volatility Relationship Model for Extractive Distillation of Ethylbenzene/p‑Xylene Mixtures</title><source>ACS Publications</source><creator>Kang, Young-Mook ; Jeon, Yukwon ; Lee, Gicheon ; Son, Hyoungjun ; Row, Sung Wook ; Choi, Seonghwan ; Seo, Young-Jong ; Chu, Young Hwan ; Shin, Jae-Min ; Shul, Yong-Gun ; No, Kyoung Tai</creator><creatorcontrib>Kang, Young-Mook ; Jeon, Yukwon ; Lee, Gicheon ; Son, Hyoungjun ; Row, Sung Wook ; Choi, Seonghwan ; Seo, Young-Jong ; Chu, Young Hwan ; Shin, Jae-Min ; Shul, Yong-Gun ; No, Kyoung Tai</creatorcontrib><description>Extractive distillation is a highly effective process for the separation of compound pairs having low relative volatility values, such as ethylbenzene (EB) and p-xylene (PX) mixtures. Many solvents or solvent mixtures have been screened experimentally to identify a suitable extraction agent for EB/PX mixtures. Because the number of possible solvent and solvent mixture candidates is high, it is necessary to introduce a computer-aided extraction performance prediction technique. In this study, a knowledge-based quantitative structure relative volatility relationship (QSRVR) model was developed using multiple linear regression (MLR) and artificial neural network (ANN) models, with each model having five descriptors. The root-mean-square errors (RMSE) of the training and test sets for the MLR model were calculated as 0.01486 and 0.00905, while their squared correlation coefficients (R 2) were 0.867 and 0.941, respectively. The R 2 and RMSE values of the total data set for the MLR model were 0.878 and 0.01408, and for the ANN model the values were 0.949 and 0.00929, respectively. The predictive ability of both models is sufficient for identifying suitable extractive distillation solvents for the separation of EB/PX mixtures.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie403235r</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Distillation ; Ethylbenzene ; Extraction ; Learning theory ; Mathematical models ; Neural networks ; Separation ; Solvents ; Volatility</subject><ispartof>Industrial & engineering chemistry research, 2014-07, Vol.53 (27), p.11159-11166</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a292t-da92543a5554c387d09c85d67eb11b4a902364d0edff5ee8ea2e9c769c29504a3</citedby><cites>FETCH-LOGICAL-a292t-da92543a5554c387d09c85d67eb11b4a902364d0edff5ee8ea2e9c769c29504a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie403235r$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie403235r$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids></links><search><creatorcontrib>Kang, Young-Mook</creatorcontrib><creatorcontrib>Jeon, Yukwon</creatorcontrib><creatorcontrib>Lee, Gicheon</creatorcontrib><creatorcontrib>Son, Hyoungjun</creatorcontrib><creatorcontrib>Row, Sung Wook</creatorcontrib><creatorcontrib>Choi, Seonghwan</creatorcontrib><creatorcontrib>Seo, Young-Jong</creatorcontrib><creatorcontrib>Chu, Young Hwan</creatorcontrib><creatorcontrib>Shin, Jae-Min</creatorcontrib><creatorcontrib>Shul, Yong-Gun</creatorcontrib><creatorcontrib>No, Kyoung Tai</creatorcontrib><title>Quantitative Structure Relative Volatility Relationship Model for Extractive Distillation of Ethylbenzene/p‑Xylene Mixtures</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Extractive distillation is a highly effective process for the separation of compound pairs having low relative volatility values, such as ethylbenzene (EB) and p-xylene (PX) mixtures. Many solvents or solvent mixtures have been screened experimentally to identify a suitable extraction agent for EB/PX mixtures. Because the number of possible solvent and solvent mixture candidates is high, it is necessary to introduce a computer-aided extraction performance prediction technique. In this study, a knowledge-based quantitative structure relative volatility relationship (QSRVR) model was developed using multiple linear regression (MLR) and artificial neural network (ANN) models, with each model having five descriptors. The root-mean-square errors (RMSE) of the training and test sets for the MLR model were calculated as 0.01486 and 0.00905, while their squared correlation coefficients (R 2) were 0.867 and 0.941, respectively. The R 2 and RMSE values of the total data set for the MLR model were 0.878 and 0.01408, and for the ANN model the values were 0.949 and 0.00929, respectively. The predictive ability of both models is sufficient for identifying suitable extractive distillation solvents for the separation of EB/PX mixtures.</description><subject>Distillation</subject><subject>Ethylbenzene</subject><subject>Extraction</subject><subject>Learning theory</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Separation</subject><subject>Solvents</subject><subject>Volatility</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkM1KAzEUhYMoWKsL3yAbQRdjM5mkkyxF6w-0iL-4G9LMHZoyndQkIx1B8BV8RZ_EqVNcubqHw8e95x6EDmNyGhMaDwwwktCEuy3UizklESeMb6MeEUJEXAi-i_a8nxNCOGeshz7ualUFE1Qwb4Afgqt1qB3geyg769muRWlCs_Fs5WdmiSc2hxIX1uHRKjilf-EL41u2o7At8CjMmnIK1TtUMFh-f369NGUr8cSs1lf8PtopVOnhYDP76Oly9Hh-HY1vr27Oz8aRopKGKFeScpYo3mbWiUhzIrXg-TCFaRxPmZKEJkOWE8iLggMIUBSkTodSU9n-r5I-Ou72Lp19rcGHbGG8hjZpBbb2WZwSIgVjiWzRkw7VznrvoMiWziyUa7KYZOuKs7-KW_aoY5X22dzWrmqf-If7AQVbfrA</recordid><startdate>20140709</startdate><enddate>20140709</enddate><creator>Kang, Young-Mook</creator><creator>Jeon, Yukwon</creator><creator>Lee, Gicheon</creator><creator>Son, Hyoungjun</creator><creator>Row, Sung Wook</creator><creator>Choi, Seonghwan</creator><creator>Seo, Young-Jong</creator><creator>Chu, Young Hwan</creator><creator>Shin, Jae-Min</creator><creator>Shul, Yong-Gun</creator><creator>No, Kyoung Tai</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20140709</creationdate><title>Quantitative Structure Relative Volatility Relationship Model for Extractive Distillation of Ethylbenzene/p‑Xylene Mixtures</title><author>Kang, Young-Mook ; Jeon, Yukwon ; Lee, Gicheon ; Son, Hyoungjun ; Row, Sung Wook ; Choi, Seonghwan ; Seo, Young-Jong ; Chu, Young Hwan ; Shin, Jae-Min ; Shul, Yong-Gun ; No, Kyoung Tai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a292t-da92543a5554c387d09c85d67eb11b4a902364d0edff5ee8ea2e9c769c29504a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Distillation</topic><topic>Ethylbenzene</topic><topic>Extraction</topic><topic>Learning theory</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Separation</topic><topic>Solvents</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Young-Mook</creatorcontrib><creatorcontrib>Jeon, Yukwon</creatorcontrib><creatorcontrib>Lee, Gicheon</creatorcontrib><creatorcontrib>Son, Hyoungjun</creatorcontrib><creatorcontrib>Row, Sung Wook</creatorcontrib><creatorcontrib>Choi, Seonghwan</creatorcontrib><creatorcontrib>Seo, Young-Jong</creatorcontrib><creatorcontrib>Chu, Young Hwan</creatorcontrib><creatorcontrib>Shin, Jae-Min</creatorcontrib><creatorcontrib>Shul, Yong-Gun</creatorcontrib><creatorcontrib>No, Kyoung Tai</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Young-Mook</au><au>Jeon, Yukwon</au><au>Lee, Gicheon</au><au>Son, Hyoungjun</au><au>Row, Sung Wook</au><au>Choi, Seonghwan</au><au>Seo, Young-Jong</au><au>Chu, Young Hwan</au><au>Shin, Jae-Min</au><au>Shul, Yong-Gun</au><au>No, Kyoung Tai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Structure Relative Volatility Relationship Model for Extractive Distillation of Ethylbenzene/p‑Xylene Mixtures</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2014-07-09</date><risdate>2014</risdate><volume>53</volume><issue>27</issue><spage>11159</spage><epage>11166</epage><pages>11159-11166</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>Extractive distillation is a highly effective process for the separation of compound pairs having low relative volatility values, such as ethylbenzene (EB) and p-xylene (PX) mixtures. Many solvents or solvent mixtures have been screened experimentally to identify a suitable extraction agent for EB/PX mixtures. Because the number of possible solvent and solvent mixture candidates is high, it is necessary to introduce a computer-aided extraction performance prediction technique. In this study, a knowledge-based quantitative structure relative volatility relationship (QSRVR) model was developed using multiple linear regression (MLR) and artificial neural network (ANN) models, with each model having five descriptors. The root-mean-square errors (RMSE) of the training and test sets for the MLR model were calculated as 0.01486 and 0.00905, while their squared correlation coefficients (R 2) were 0.867 and 0.941, respectively. The R 2 and RMSE values of the total data set for the MLR model were 0.878 and 0.01408, and for the ANN model the values were 0.949 and 0.00929, respectively. The predictive ability of both models is sufficient for identifying suitable extractive distillation solvents for the separation of EB/PX mixtures.</abstract><pub>American Chemical Society</pub><doi>10.1021/ie403235r</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2014-07, Vol.53 (27), p.11159-11166 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_proquest_miscellaneous_1700984439 |
source | ACS Publications |
subjects | Distillation Ethylbenzene Extraction Learning theory Mathematical models Neural networks Separation Solvents Volatility |
title | Quantitative Structure Relative Volatility Relationship Model for Extractive Distillation of Ethylbenzene/p‑Xylene Mixtures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A04%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Structure%20Relative%20Volatility%20Relationship%20Model%20for%20Extractive%20Distillation%20of%20Ethylbenzene/p%E2%80%91Xylene%20Mixtures&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Kang,%20Young-Mook&rft.date=2014-07-09&rft.volume=53&rft.issue=27&rft.spage=11159&rft.epage=11166&rft.pages=11159-11166&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/ie403235r&rft_dat=%3Cproquest_cross%3E1700984439%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1700984439&rft_id=info:pmid/&rfr_iscdi=true |