Quantitative Structure Relative Volatility Relationship Model for Extractive Distillation of Ethylbenzene/p‑Xylene Mixtures

Extractive distillation is a highly effective process for the separation of compound pairs having low relative volatility values, such as ethylbenzene (EB) and p-xylene (PX) mixtures. Many solvents or solvent mixtures have been screened experimentally to identify a suitable extraction agent for EB/P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2014-07, Vol.53 (27), p.11159-11166
Hauptverfasser: Kang, Young-Mook, Jeon, Yukwon, Lee, Gicheon, Son, Hyoungjun, Row, Sung Wook, Choi, Seonghwan, Seo, Young-Jong, Chu, Young Hwan, Shin, Jae-Min, Shul, Yong-Gun, No, Kyoung Tai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11166
container_issue 27
container_start_page 11159
container_title Industrial & engineering chemistry research
container_volume 53
creator Kang, Young-Mook
Jeon, Yukwon
Lee, Gicheon
Son, Hyoungjun
Row, Sung Wook
Choi, Seonghwan
Seo, Young-Jong
Chu, Young Hwan
Shin, Jae-Min
Shul, Yong-Gun
No, Kyoung Tai
description Extractive distillation is a highly effective process for the separation of compound pairs having low relative volatility values, such as ethylbenzene (EB) and p-xylene (PX) mixtures. Many solvents or solvent mixtures have been screened experimentally to identify a suitable extraction agent for EB/PX mixtures. Because the number of possible solvent and solvent mixture candidates is high, it is necessary to introduce a computer-aided extraction performance prediction technique. In this study, a knowledge-based quantitative structure relative volatility relationship (QSRVR) model was developed using multiple linear regression (MLR) and artificial neural network (ANN) models, with each model having five descriptors. The root-mean-square errors (RMSE) of the training and test sets for the MLR model were calculated as 0.01486 and 0.00905, while their squared correlation coefficients (R 2) were 0.867 and 0.941, respectively. The R 2 and RMSE values of the total data set for the MLR model were 0.878 and 0.01408, and for the ANN model the values were 0.949 and 0.00929, respectively. The predictive ability of both models is sufficient for identifying suitable extractive distillation solvents for the separation of EB/PX mixtures.
doi_str_mv 10.1021/ie403235r
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1700984439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1700984439</sourcerecordid><originalsourceid>FETCH-LOGICAL-a292t-da92543a5554c387d09c85d67eb11b4a902364d0edff5ee8ea2e9c769c29504a3</originalsourceid><addsrcrecordid>eNptkM1KAzEUhYMoWKsL3yAbQRdjM5mkkyxF6w-0iL-4G9LMHZoyndQkIx1B8BV8RZ_EqVNcubqHw8e95x6EDmNyGhMaDwwwktCEuy3UizklESeMb6MeEUJEXAi-i_a8nxNCOGeshz7ualUFE1Qwb4Afgqt1qB3geyg769muRWlCs_Fs5WdmiSc2hxIX1uHRKjilf-EL41u2o7At8CjMmnIK1TtUMFh-f369NGUr8cSs1lf8PtopVOnhYDP76Oly9Hh-HY1vr27Oz8aRopKGKFeScpYo3mbWiUhzIrXg-TCFaRxPmZKEJkOWE8iLggMIUBSkTodSU9n-r5I-Ou72Lp19rcGHbGG8hjZpBbb2WZwSIgVjiWzRkw7VznrvoMiWziyUa7KYZOuKs7-KW_aoY5X22dzWrmqf-If7AQVbfrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1700984439</pqid></control><display><type>article</type><title>Quantitative Structure Relative Volatility Relationship Model for Extractive Distillation of Ethylbenzene/p‑Xylene Mixtures</title><source>ACS Publications</source><creator>Kang, Young-Mook ; Jeon, Yukwon ; Lee, Gicheon ; Son, Hyoungjun ; Row, Sung Wook ; Choi, Seonghwan ; Seo, Young-Jong ; Chu, Young Hwan ; Shin, Jae-Min ; Shul, Yong-Gun ; No, Kyoung Tai</creator><creatorcontrib>Kang, Young-Mook ; Jeon, Yukwon ; Lee, Gicheon ; Son, Hyoungjun ; Row, Sung Wook ; Choi, Seonghwan ; Seo, Young-Jong ; Chu, Young Hwan ; Shin, Jae-Min ; Shul, Yong-Gun ; No, Kyoung Tai</creatorcontrib><description>Extractive distillation is a highly effective process for the separation of compound pairs having low relative volatility values, such as ethylbenzene (EB) and p-xylene (PX) mixtures. Many solvents or solvent mixtures have been screened experimentally to identify a suitable extraction agent for EB/PX mixtures. Because the number of possible solvent and solvent mixture candidates is high, it is necessary to introduce a computer-aided extraction performance prediction technique. In this study, a knowledge-based quantitative structure relative volatility relationship (QSRVR) model was developed using multiple linear regression (MLR) and artificial neural network (ANN) models, with each model having five descriptors. The root-mean-square errors (RMSE) of the training and test sets for the MLR model were calculated as 0.01486 and 0.00905, while their squared correlation coefficients (R 2) were 0.867 and 0.941, respectively. The R 2 and RMSE values of the total data set for the MLR model were 0.878 and 0.01408, and for the ANN model the values were 0.949 and 0.00929, respectively. The predictive ability of both models is sufficient for identifying suitable extractive distillation solvents for the separation of EB/PX mixtures.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie403235r</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Distillation ; Ethylbenzene ; Extraction ; Learning theory ; Mathematical models ; Neural networks ; Separation ; Solvents ; Volatility</subject><ispartof>Industrial &amp; engineering chemistry research, 2014-07, Vol.53 (27), p.11159-11166</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a292t-da92543a5554c387d09c85d67eb11b4a902364d0edff5ee8ea2e9c769c29504a3</citedby><cites>FETCH-LOGICAL-a292t-da92543a5554c387d09c85d67eb11b4a902364d0edff5ee8ea2e9c769c29504a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie403235r$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie403235r$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids></links><search><creatorcontrib>Kang, Young-Mook</creatorcontrib><creatorcontrib>Jeon, Yukwon</creatorcontrib><creatorcontrib>Lee, Gicheon</creatorcontrib><creatorcontrib>Son, Hyoungjun</creatorcontrib><creatorcontrib>Row, Sung Wook</creatorcontrib><creatorcontrib>Choi, Seonghwan</creatorcontrib><creatorcontrib>Seo, Young-Jong</creatorcontrib><creatorcontrib>Chu, Young Hwan</creatorcontrib><creatorcontrib>Shin, Jae-Min</creatorcontrib><creatorcontrib>Shul, Yong-Gun</creatorcontrib><creatorcontrib>No, Kyoung Tai</creatorcontrib><title>Quantitative Structure Relative Volatility Relationship Model for Extractive Distillation of Ethylbenzene/p‑Xylene Mixtures</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Extractive distillation is a highly effective process for the separation of compound pairs having low relative volatility values, such as ethylbenzene (EB) and p-xylene (PX) mixtures. Many solvents or solvent mixtures have been screened experimentally to identify a suitable extraction agent for EB/PX mixtures. Because the number of possible solvent and solvent mixture candidates is high, it is necessary to introduce a computer-aided extraction performance prediction technique. In this study, a knowledge-based quantitative structure relative volatility relationship (QSRVR) model was developed using multiple linear regression (MLR) and artificial neural network (ANN) models, with each model having five descriptors. The root-mean-square errors (RMSE) of the training and test sets for the MLR model were calculated as 0.01486 and 0.00905, while their squared correlation coefficients (R 2) were 0.867 and 0.941, respectively. The R 2 and RMSE values of the total data set for the MLR model were 0.878 and 0.01408, and for the ANN model the values were 0.949 and 0.00929, respectively. The predictive ability of both models is sufficient for identifying suitable extractive distillation solvents for the separation of EB/PX mixtures.</description><subject>Distillation</subject><subject>Ethylbenzene</subject><subject>Extraction</subject><subject>Learning theory</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Separation</subject><subject>Solvents</subject><subject>Volatility</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkM1KAzEUhYMoWKsL3yAbQRdjM5mkkyxF6w-0iL-4G9LMHZoyndQkIx1B8BV8RZ_EqVNcubqHw8e95x6EDmNyGhMaDwwwktCEuy3UizklESeMb6MeEUJEXAi-i_a8nxNCOGeshz7ualUFE1Qwb4Afgqt1qB3geyg769muRWlCs_Fs5WdmiSc2hxIX1uHRKjilf-EL41u2o7At8CjMmnIK1TtUMFh-f369NGUr8cSs1lf8PtopVOnhYDP76Oly9Hh-HY1vr27Oz8aRopKGKFeScpYo3mbWiUhzIrXg-TCFaRxPmZKEJkOWE8iLggMIUBSkTodSU9n-r5I-Ou72Lp19rcGHbGG8hjZpBbb2WZwSIgVjiWzRkw7VznrvoMiWziyUa7KYZOuKs7-KW_aoY5X22dzWrmqf-If7AQVbfrA</recordid><startdate>20140709</startdate><enddate>20140709</enddate><creator>Kang, Young-Mook</creator><creator>Jeon, Yukwon</creator><creator>Lee, Gicheon</creator><creator>Son, Hyoungjun</creator><creator>Row, Sung Wook</creator><creator>Choi, Seonghwan</creator><creator>Seo, Young-Jong</creator><creator>Chu, Young Hwan</creator><creator>Shin, Jae-Min</creator><creator>Shul, Yong-Gun</creator><creator>No, Kyoung Tai</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20140709</creationdate><title>Quantitative Structure Relative Volatility Relationship Model for Extractive Distillation of Ethylbenzene/p‑Xylene Mixtures</title><author>Kang, Young-Mook ; Jeon, Yukwon ; Lee, Gicheon ; Son, Hyoungjun ; Row, Sung Wook ; Choi, Seonghwan ; Seo, Young-Jong ; Chu, Young Hwan ; Shin, Jae-Min ; Shul, Yong-Gun ; No, Kyoung Tai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a292t-da92543a5554c387d09c85d67eb11b4a902364d0edff5ee8ea2e9c769c29504a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Distillation</topic><topic>Ethylbenzene</topic><topic>Extraction</topic><topic>Learning theory</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Separation</topic><topic>Solvents</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Young-Mook</creatorcontrib><creatorcontrib>Jeon, Yukwon</creatorcontrib><creatorcontrib>Lee, Gicheon</creatorcontrib><creatorcontrib>Son, Hyoungjun</creatorcontrib><creatorcontrib>Row, Sung Wook</creatorcontrib><creatorcontrib>Choi, Seonghwan</creatorcontrib><creatorcontrib>Seo, Young-Jong</creatorcontrib><creatorcontrib>Chu, Young Hwan</creatorcontrib><creatorcontrib>Shin, Jae-Min</creatorcontrib><creatorcontrib>Shul, Yong-Gun</creatorcontrib><creatorcontrib>No, Kyoung Tai</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Young-Mook</au><au>Jeon, Yukwon</au><au>Lee, Gicheon</au><au>Son, Hyoungjun</au><au>Row, Sung Wook</au><au>Choi, Seonghwan</au><au>Seo, Young-Jong</au><au>Chu, Young Hwan</au><au>Shin, Jae-Min</au><au>Shul, Yong-Gun</au><au>No, Kyoung Tai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Structure Relative Volatility Relationship Model for Extractive Distillation of Ethylbenzene/p‑Xylene Mixtures</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2014-07-09</date><risdate>2014</risdate><volume>53</volume><issue>27</issue><spage>11159</spage><epage>11166</epage><pages>11159-11166</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>Extractive distillation is a highly effective process for the separation of compound pairs having low relative volatility values, such as ethylbenzene (EB) and p-xylene (PX) mixtures. Many solvents or solvent mixtures have been screened experimentally to identify a suitable extraction agent for EB/PX mixtures. Because the number of possible solvent and solvent mixture candidates is high, it is necessary to introduce a computer-aided extraction performance prediction technique. In this study, a knowledge-based quantitative structure relative volatility relationship (QSRVR) model was developed using multiple linear regression (MLR) and artificial neural network (ANN) models, with each model having five descriptors. The root-mean-square errors (RMSE) of the training and test sets for the MLR model were calculated as 0.01486 and 0.00905, while their squared correlation coefficients (R 2) were 0.867 and 0.941, respectively. The R 2 and RMSE values of the total data set for the MLR model were 0.878 and 0.01408, and for the ANN model the values were 0.949 and 0.00929, respectively. The predictive ability of both models is sufficient for identifying suitable extractive distillation solvents for the separation of EB/PX mixtures.</abstract><pub>American Chemical Society</pub><doi>10.1021/ie403235r</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2014-07, Vol.53 (27), p.11159-11166
issn 0888-5885
1520-5045
language eng
recordid cdi_proquest_miscellaneous_1700984439
source ACS Publications
subjects Distillation
Ethylbenzene
Extraction
Learning theory
Mathematical models
Neural networks
Separation
Solvents
Volatility
title Quantitative Structure Relative Volatility Relationship Model for Extractive Distillation of Ethylbenzene/p‑Xylene Mixtures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A04%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Structure%20Relative%20Volatility%20Relationship%20Model%20for%20Extractive%20Distillation%20of%20Ethylbenzene/p%E2%80%91Xylene%20Mixtures&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Kang,%20Young-Mook&rft.date=2014-07-09&rft.volume=53&rft.issue=27&rft.spage=11159&rft.epage=11166&rft.pages=11159-11166&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/ie403235r&rft_dat=%3Cproquest_cross%3E1700984439%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1700984439&rft_id=info:pmid/&rfr_iscdi=true