Investigating the effect of precession on searches for neutron-star–black-hole binaries with Advanced LIGO

The first direct detection of neutron-star-blackhole binaries will likely be made with gravitational-wave observatories. Advanced LIGO and Advanced Virgo will be able to observe neutron-star-blackhole mergers at a maximum distance of 900 Mpc. To achieve this sensitivity, gravitational-wave searches...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D, Particles, fields, gravitation, and cosmology Particles, fields, gravitation, and cosmology, 2014-01, Vol.89 (2), Article 024010
Hauptverfasser: Harry, Ian W., Nitz, Alexander H., Brown, Duncan A., Lundgren, Andrew P., Ochsner, Evan, Keppel, Drew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Physical review. D, Particles, fields, gravitation, and cosmology
container_volume 89
creator Harry, Ian W.
Nitz, Alexander H.
Brown, Duncan A.
Lundgren, Andrew P.
Ochsner, Evan
Keppel, Drew
description The first direct detection of neutron-star-blackhole binaries will likely be made with gravitational-wave observatories. Advanced LIGO and Advanced Virgo will be able to observe neutron-star-blackhole mergers at a maximum distance of 900 Mpc. To achieve this sensitivity, gravitational-wave searches will rely on using a bank of filter waveforms that accurately model the expected gravitational-wave signal. The emitted signal will depend on the masses of the black hole and the neutron star and also the angular momentum of both components. We identify the regions of parameter space where such systems occur and suggest methods for searching for highly precessing neutron-star-blackhole binaries.
doi_str_mv 10.1103/PhysRevD.89.024010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1700984220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1700984220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-30e9cacb7db41961c670d05baf98e0f5217e2a01d16404b0de8abb766a255d13</originalsourceid><addsrcrecordid>eNo1kM1KAzEUhYMoWKsv4CpLN1NvMn-ZZalaC4WKdB-SzE1ndJrUZFrpznfwDX0SK61w4dzFx4HzEXLLYMQYpPcvzT6-4u5hJKoR8AwYnJEBy3NIeFqI89NfVpW4JFcxvgGkvCjLAelmboexb1eqb92K9g1StBZNT72lm4AGY2y9o4eLqIJpMFLrA3W47YN3SexV-Pn61p0y70njO6S6dSq0B-yz7Rs6rnfKGazpfDZdXJMLq7qIN6cckuXT43LynMwX09lkPE8MF9AnKWBllNFlrTNWFcwUJdSQa2UrgWBzzkrkCljNigwyDTUKpXVZFIrnec3SIbk71m6C_9ge1sl1Gw12nXLot1GyEqASGedwQPkRNcHHGNDKTWjXKuwlA_lnVv6blaKSR7PpL6xRcG4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1700984220</pqid></control><display><type>article</type><title>Investigating the effect of precession on searches for neutron-star–black-hole binaries with Advanced LIGO</title><source>American Physical Society Journals</source><creator>Harry, Ian W. ; Nitz, Alexander H. ; Brown, Duncan A. ; Lundgren, Andrew P. ; Ochsner, Evan ; Keppel, Drew</creator><creatorcontrib>Harry, Ian W. ; Nitz, Alexander H. ; Brown, Duncan A. ; Lundgren, Andrew P. ; Ochsner, Evan ; Keppel, Drew</creatorcontrib><description>The first direct detection of neutron-star-blackhole binaries will likely be made with gravitational-wave observatories. Advanced LIGO and Advanced Virgo will be able to observe neutron-star-blackhole mergers at a maximum distance of 900 Mpc. To achieve this sensitivity, gravitational-wave searches will rely on using a bank of filter waveforms that accurately model the expected gravitational-wave signal. The emitted signal will depend on the masses of the black hole and the neutron star and also the angular momentum of both components. We identify the regions of parameter space where such systems occur and suggest methods for searching for highly precessing neutron-star-blackhole binaries.</description><identifier>ISSN: 1550-7998</identifier><identifier>EISSN: 1550-2368</identifier><identifier>DOI: 10.1103/PhysRevD.89.024010</identifier><language>eng</language><subject>Angular momentum ; Banks ; Black holes (astronomy) ; Cosmology ; Emittance ; Gravitation ; Mathematical models ; Precession ; Searching ; Waveforms</subject><ispartof>Physical review. D, Particles, fields, gravitation, and cosmology, 2014-01, Vol.89 (2), Article 024010</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-30e9cacb7db41961c670d05baf98e0f5217e2a01d16404b0de8abb766a255d13</citedby><cites>FETCH-LOGICAL-c280t-30e9cacb7db41961c670d05baf98e0f5217e2a01d16404b0de8abb766a255d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Harry, Ian W.</creatorcontrib><creatorcontrib>Nitz, Alexander H.</creatorcontrib><creatorcontrib>Brown, Duncan A.</creatorcontrib><creatorcontrib>Lundgren, Andrew P.</creatorcontrib><creatorcontrib>Ochsner, Evan</creatorcontrib><creatorcontrib>Keppel, Drew</creatorcontrib><title>Investigating the effect of precession on searches for neutron-star–black-hole binaries with Advanced LIGO</title><title>Physical review. D, Particles, fields, gravitation, and cosmology</title><description>The first direct detection of neutron-star-blackhole binaries will likely be made with gravitational-wave observatories. Advanced LIGO and Advanced Virgo will be able to observe neutron-star-blackhole mergers at a maximum distance of 900 Mpc. To achieve this sensitivity, gravitational-wave searches will rely on using a bank of filter waveforms that accurately model the expected gravitational-wave signal. The emitted signal will depend on the masses of the black hole and the neutron star and also the angular momentum of both components. We identify the regions of parameter space where such systems occur and suggest methods for searching for highly precessing neutron-star-blackhole binaries.</description><subject>Angular momentum</subject><subject>Banks</subject><subject>Black holes (astronomy)</subject><subject>Cosmology</subject><subject>Emittance</subject><subject>Gravitation</subject><subject>Mathematical models</subject><subject>Precession</subject><subject>Searching</subject><subject>Waveforms</subject><issn>1550-7998</issn><issn>1550-2368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo1kM1KAzEUhYMoWKsv4CpLN1NvMn-ZZalaC4WKdB-SzE1ndJrUZFrpznfwDX0SK61w4dzFx4HzEXLLYMQYpPcvzT6-4u5hJKoR8AwYnJEBy3NIeFqI89NfVpW4JFcxvgGkvCjLAelmboexb1eqb92K9g1StBZNT72lm4AGY2y9o4eLqIJpMFLrA3W47YN3SexV-Pn61p0y70njO6S6dSq0B-yz7Rs6rnfKGazpfDZdXJMLq7qIN6cckuXT43LynMwX09lkPE8MF9AnKWBllNFlrTNWFcwUJdSQa2UrgWBzzkrkCljNigwyDTUKpXVZFIrnec3SIbk71m6C_9ge1sl1Gw12nXLot1GyEqASGedwQPkRNcHHGNDKTWjXKuwlA_lnVv6blaKSR7PpL6xRcG4</recordid><startdate>20140113</startdate><enddate>20140113</enddate><creator>Harry, Ian W.</creator><creator>Nitz, Alexander H.</creator><creator>Brown, Duncan A.</creator><creator>Lundgren, Andrew P.</creator><creator>Ochsner, Evan</creator><creator>Keppel, Drew</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140113</creationdate><title>Investigating the effect of precession on searches for neutron-star–black-hole binaries with Advanced LIGO</title><author>Harry, Ian W. ; Nitz, Alexander H. ; Brown, Duncan A. ; Lundgren, Andrew P. ; Ochsner, Evan ; Keppel, Drew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-30e9cacb7db41961c670d05baf98e0f5217e2a01d16404b0de8abb766a255d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Angular momentum</topic><topic>Banks</topic><topic>Black holes (astronomy)</topic><topic>Cosmology</topic><topic>Emittance</topic><topic>Gravitation</topic><topic>Mathematical models</topic><topic>Precession</topic><topic>Searching</topic><topic>Waveforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Harry, Ian W.</creatorcontrib><creatorcontrib>Nitz, Alexander H.</creatorcontrib><creatorcontrib>Brown, Duncan A.</creatorcontrib><creatorcontrib>Lundgren, Andrew P.</creatorcontrib><creatorcontrib>Ochsner, Evan</creatorcontrib><creatorcontrib>Keppel, Drew</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D, Particles, fields, gravitation, and cosmology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harry, Ian W.</au><au>Nitz, Alexander H.</au><au>Brown, Duncan A.</au><au>Lundgren, Andrew P.</au><au>Ochsner, Evan</au><au>Keppel, Drew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating the effect of precession on searches for neutron-star–black-hole binaries with Advanced LIGO</atitle><jtitle>Physical review. D, Particles, fields, gravitation, and cosmology</jtitle><date>2014-01-13</date><risdate>2014</risdate><volume>89</volume><issue>2</issue><artnum>024010</artnum><issn>1550-7998</issn><eissn>1550-2368</eissn><abstract>The first direct detection of neutron-star-blackhole binaries will likely be made with gravitational-wave observatories. Advanced LIGO and Advanced Virgo will be able to observe neutron-star-blackhole mergers at a maximum distance of 900 Mpc. To achieve this sensitivity, gravitational-wave searches will rely on using a bank of filter waveforms that accurately model the expected gravitational-wave signal. The emitted signal will depend on the masses of the black hole and the neutron star and also the angular momentum of both components. We identify the regions of parameter space where such systems occur and suggest methods for searching for highly precessing neutron-star-blackhole binaries.</abstract><doi>10.1103/PhysRevD.89.024010</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1550-7998
ispartof Physical review. D, Particles, fields, gravitation, and cosmology, 2014-01, Vol.89 (2), Article 024010
issn 1550-7998
1550-2368
language eng
recordid cdi_proquest_miscellaneous_1700984220
source American Physical Society Journals
subjects Angular momentum
Banks
Black holes (astronomy)
Cosmology
Emittance
Gravitation
Mathematical models
Precession
Searching
Waveforms
title Investigating the effect of precession on searches for neutron-star–black-hole binaries with Advanced LIGO
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A16%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20the%20effect%20of%20precession%20on%20searches%20for%20neutron-star%E2%80%93black-hole%20binaries%20with%20Advanced%20LIGO&rft.jtitle=Physical%20review.%20D,%20Particles,%20fields,%20gravitation,%20and%20cosmology&rft.au=Harry,%20Ian%20W.&rft.date=2014-01-13&rft.volume=89&rft.issue=2&rft.artnum=024010&rft.issn=1550-7998&rft.eissn=1550-2368&rft_id=info:doi/10.1103/PhysRevD.89.024010&rft_dat=%3Cproquest_cross%3E1700984220%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1700984220&rft_id=info:pmid/&rfr_iscdi=true