Dimensions of CH sub(4)-Jet Flame in Hot O sub(2)/CO sub(2) Coflow

The present study has numerically simulated the oxy-fuel combustion of a methane (CH sub(4)) jet in hot coflow (JHC). The main objective is to investigate the influences of the oxygen (O sub(2)) molar fraction (X sub(O2) super(*)), temperature (T sub(cof) super(*)) and velocity (v sub(cof) super(*))...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2012-06, Vol.26 (6), p.3257-3266-3257-3266
Hauptverfasser: Mei, Zhenfeng, Mi, Jianchun, Wang, Feifei, Zheng, Chuguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present study has numerically simulated the oxy-fuel combustion of a methane (CH sub(4)) jet in hot coflow (JHC). The main objective is to investigate the influences of the oxygen (O sub(2)) molar fraction (X sub(O2) super(*)), temperature (T sub(cof) super(*)) and velocity (v sub(cof) super(*)) of the O sub(2)/CO sub(2) coflow on dimensions of the JHC reaction zone or flame. The simulations use the model of eddy dissipation concept (EDC) with the detailed chemical mechanism described by GRI-Mech 3.0. To validate the modeling, several air-fuel JHC flames are predicted under the same conditions of the work of Dally et al. [Proc. Combust. Inst.2002, 29, 1147-1154]; the predictions match well with the measurements. Results suggest that, as either X sub(O2) super(*) or v sub(cof) super(*) decrease or T sub(cof) super(*) increases, the volume of the JHC reaction zone increases and hence the overall oxidation rate of CH sub(4) decreases. In particular, raising the coflow speed v sub(cof) super(*) causes the flame to be significantly thinner but only slightly longer. It is also demonstrated that the oxy-fuel reaction zone is larger, and so, the temperature is lower than the air-fuel counterpart. Besides, under identical conditions, the oxy-fuel combustion produces more carbon monoxide than does the air-fuel combustion.
ISSN:0887-0624
1520-5029
DOI:10.1021/ef3000938