Prolonged Hot Electron Dynamics in Plasmonic-Metal/Semiconductor Heterostructures with Implications for Solar Photocatalysis

Ideal solar‐to‐fuel photocatalysts must effectively harvest sunlight to generate significant quantities of long‐lived charge carriers necessary for chemical reactions. Here we demonstrate the merits of augmenting traditional photoelectrochemical cells with plasmonic nanoparticles to satisfy these da...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2014-07, Vol.53 (30), p.7887-7891
Hauptverfasser: DuChene, Joseph S., Sweeny, Brendan C., Johnston-Peck, Aaron C., Su, Dong, Stach, Eric A., Wei, Wei David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7891
container_issue 30
container_start_page 7887
container_title Angewandte Chemie International Edition
container_volume 53
creator DuChene, Joseph S.
Sweeny, Brendan C.
Johnston-Peck, Aaron C.
Su, Dong
Stach, Eric A.
Wei, Wei David
description Ideal solar‐to‐fuel photocatalysts must effectively harvest sunlight to generate significant quantities of long‐lived charge carriers necessary for chemical reactions. Here we demonstrate the merits of augmenting traditional photoelectrochemical cells with plasmonic nanoparticles to satisfy these daunting photocatalytic requirements. Electrochemical techniques were employed to elucidate the mechanics of plasmon‐mediated electron transfer within Au/TiO2 heterostructures under visible‐light (λ>515 nm) irradiation in solution. Significantly, we discovered that these transferred electrons displayed excited‐state lifetimes two orders of magnitude longer than those of electrons photogenerated directly within TiO2 via UV excitation. These long‐lived electrons further enable visible‐light‐driven H2 evolution from water, heralding a new photocatalytic paradigm for solar energy conversion. Harvesting hot electrons: Plasmon‐mediated electron transfer (PMET) in plasmonic (Au/TiO2) photoanodes provides a unique pathway for procuring excited‐state electrons that exhibit lifetimes commensurate with the prolonged timescales required for solar photochemistry. These long‐lived electrons were harnessed for visible‐light‐driven hydrogen evolution from water (see picture).
doi_str_mv 10.1002/anie.201404259
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1700984097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1547542577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5519-a4e46b99c46aa79f1d4d0d6ad185549807ac3c8aaf868bc88668dcf7f20aada03</originalsourceid><addsrcrecordid>eNqFkUtvEzEUhUeIipbCliUaiQ2bSW2PX7OsStoEQonU8thZNx4PdfGMU9ujEokfj6O0EWLTle3r7xzpnlMUbzCaYITICQzWTAjCFFHCmmfFEWYEV7UQ9fN8p3VdCcnwYfEyxtvMS4n4i-KQ0IYgQsRR8WcZvPPDT9OWM5_KqTM6BT-UHzYD9FbH0g7l0kHs_WB19dkkcCdXJv_4oR118qGcmWSCjynk5xhMLO9tuinn_dpZDcn6IZZdxq68g1Aub3zyeQxuE218VRx04KJ5_XAeF1_Pp9dns2rx5WJ-drqoNGO4qYAayldNoykHEE2HW9qilkOLJWO0kUiArrUE6CSXKy0l57LVnegIAmgB1cfF-53vOvi70cSkehu1cQ4G48eosECokRQ14mmUUcFy1GKLvvsPvfVjGPIiW4pJwjknmZrsKJ1DisF0ah1sD2GjMFLbCtW2QrWvMAvePtiOq960e_yxsww0O-DeOrN5wk6dXs6n_5pXO62NyfzeayH8UlzUgqnvlxfqG7lm9Y-Pn9Si_gt7FLlh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545826662</pqid></control><display><type>article</type><title>Prolonged Hot Electron Dynamics in Plasmonic-Metal/Semiconductor Heterostructures with Implications for Solar Photocatalysis</title><source>Wiley Blackwell Single Titles</source><creator>DuChene, Joseph S. ; Sweeny, Brendan C. ; Johnston-Peck, Aaron C. ; Su, Dong ; Stach, Eric A. ; Wei, Wei David</creator><creatorcontrib>DuChene, Joseph S. ; Sweeny, Brendan C. ; Johnston-Peck, Aaron C. ; Su, Dong ; Stach, Eric A. ; Wei, Wei David</creatorcontrib><description>Ideal solar‐to‐fuel photocatalysts must effectively harvest sunlight to generate significant quantities of long‐lived charge carriers necessary for chemical reactions. Here we demonstrate the merits of augmenting traditional photoelectrochemical cells with plasmonic nanoparticles to satisfy these daunting photocatalytic requirements. Electrochemical techniques were employed to elucidate the mechanics of plasmon‐mediated electron transfer within Au/TiO2 heterostructures under visible‐light (λ&gt;515 nm) irradiation in solution. Significantly, we discovered that these transferred electrons displayed excited‐state lifetimes two orders of magnitude longer than those of electrons photogenerated directly within TiO2 via UV excitation. These long‐lived electrons further enable visible‐light‐driven H2 evolution from water, heralding a new photocatalytic paradigm for solar energy conversion. Harvesting hot electrons: Plasmon‐mediated electron transfer (PMET) in plasmonic (Au/TiO2) photoanodes provides a unique pathway for procuring excited‐state electrons that exhibit lifetimes commensurate with the prolonged timescales required for solar photochemistry. These long‐lived electrons were harnessed for visible‐light‐driven hydrogen evolution from water (see picture).</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201404259</identifier><identifier>PMID: 24920227</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Electron transfer ; Excitation ; Gold ; Heterostructures ; Hot electrons ; Photocatalysis ; photoelectrochemistry ; Plasmonics ; Semiconductors ; Solar energy ; solar energy conversion ; surface plasmon resonance ; Titanium dioxide ; water splitting</subject><ispartof>Angewandte Chemie International Edition, 2014-07, Vol.53 (30), p.7887-7891</ispartof><rights>2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5519-a4e46b99c46aa79f1d4d0d6ad185549807ac3c8aaf868bc88668dcf7f20aada03</citedby><cites>FETCH-LOGICAL-c5519-a4e46b99c46aa79f1d4d0d6ad185549807ac3c8aaf868bc88668dcf7f20aada03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201404259$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201404259$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24920227$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>DuChene, Joseph S.</creatorcontrib><creatorcontrib>Sweeny, Brendan C.</creatorcontrib><creatorcontrib>Johnston-Peck, Aaron C.</creatorcontrib><creatorcontrib>Su, Dong</creatorcontrib><creatorcontrib>Stach, Eric A.</creatorcontrib><creatorcontrib>Wei, Wei David</creatorcontrib><title>Prolonged Hot Electron Dynamics in Plasmonic-Metal/Semiconductor Heterostructures with Implications for Solar Photocatalysis</title><title>Angewandte Chemie International Edition</title><addtitle>Angew. Chem. Int. Ed</addtitle><description>Ideal solar‐to‐fuel photocatalysts must effectively harvest sunlight to generate significant quantities of long‐lived charge carriers necessary for chemical reactions. Here we demonstrate the merits of augmenting traditional photoelectrochemical cells with plasmonic nanoparticles to satisfy these daunting photocatalytic requirements. Electrochemical techniques were employed to elucidate the mechanics of plasmon‐mediated electron transfer within Au/TiO2 heterostructures under visible‐light (λ&gt;515 nm) irradiation in solution. Significantly, we discovered that these transferred electrons displayed excited‐state lifetimes two orders of magnitude longer than those of electrons photogenerated directly within TiO2 via UV excitation. These long‐lived electrons further enable visible‐light‐driven H2 evolution from water, heralding a new photocatalytic paradigm for solar energy conversion. Harvesting hot electrons: Plasmon‐mediated electron transfer (PMET) in plasmonic (Au/TiO2) photoanodes provides a unique pathway for procuring excited‐state electrons that exhibit lifetimes commensurate with the prolonged timescales required for solar photochemistry. These long‐lived electrons were harnessed for visible‐light‐driven hydrogen evolution from water (see picture).</description><subject>Electron transfer</subject><subject>Excitation</subject><subject>Gold</subject><subject>Heterostructures</subject><subject>Hot electrons</subject><subject>Photocatalysis</subject><subject>photoelectrochemistry</subject><subject>Plasmonics</subject><subject>Semiconductors</subject><subject>Solar energy</subject><subject>solar energy conversion</subject><subject>surface plasmon resonance</subject><subject>Titanium dioxide</subject><subject>water splitting</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkUtvEzEUhUeIipbCliUaiQ2bSW2PX7OsStoEQonU8thZNx4PdfGMU9ujEokfj6O0EWLTle3r7xzpnlMUbzCaYITICQzWTAjCFFHCmmfFEWYEV7UQ9fN8p3VdCcnwYfEyxtvMS4n4i-KQ0IYgQsRR8WcZvPPDT9OWM5_KqTM6BT-UHzYD9FbH0g7l0kHs_WB19dkkcCdXJv_4oR118qGcmWSCjynk5xhMLO9tuinn_dpZDcn6IZZdxq68g1Aub3zyeQxuE218VRx04KJ5_XAeF1_Pp9dns2rx5WJ-drqoNGO4qYAayldNoykHEE2HW9qilkOLJWO0kUiArrUE6CSXKy0l57LVnegIAmgB1cfF-53vOvi70cSkehu1cQ4G48eosECokRQ14mmUUcFy1GKLvvsPvfVjGPIiW4pJwjknmZrsKJ1DisF0ah1sD2GjMFLbCtW2QrWvMAvePtiOq960e_yxsww0O-DeOrN5wk6dXs6n_5pXO62NyfzeayH8UlzUgqnvlxfqG7lm9Y-Pn9Si_gt7FLlh</recordid><startdate>20140721</startdate><enddate>20140721</enddate><creator>DuChene, Joseph S.</creator><creator>Sweeny, Brendan C.</creator><creator>Johnston-Peck, Aaron C.</creator><creator>Su, Dong</creator><creator>Stach, Eric A.</creator><creator>Wei, Wei David</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140721</creationdate><title>Prolonged Hot Electron Dynamics in Plasmonic-Metal/Semiconductor Heterostructures with Implications for Solar Photocatalysis</title><author>DuChene, Joseph S. ; Sweeny, Brendan C. ; Johnston-Peck, Aaron C. ; Su, Dong ; Stach, Eric A. ; Wei, Wei David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5519-a4e46b99c46aa79f1d4d0d6ad185549807ac3c8aaf868bc88668dcf7f20aada03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Electron transfer</topic><topic>Excitation</topic><topic>Gold</topic><topic>Heterostructures</topic><topic>Hot electrons</topic><topic>Photocatalysis</topic><topic>photoelectrochemistry</topic><topic>Plasmonics</topic><topic>Semiconductors</topic><topic>Solar energy</topic><topic>solar energy conversion</topic><topic>surface plasmon resonance</topic><topic>Titanium dioxide</topic><topic>water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DuChene, Joseph S.</creatorcontrib><creatorcontrib>Sweeny, Brendan C.</creatorcontrib><creatorcontrib>Johnston-Peck, Aaron C.</creatorcontrib><creatorcontrib>Su, Dong</creatorcontrib><creatorcontrib>Stach, Eric A.</creatorcontrib><creatorcontrib>Wei, Wei David</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DuChene, Joseph S.</au><au>Sweeny, Brendan C.</au><au>Johnston-Peck, Aaron C.</au><au>Su, Dong</au><au>Stach, Eric A.</au><au>Wei, Wei David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prolonged Hot Electron Dynamics in Plasmonic-Metal/Semiconductor Heterostructures with Implications for Solar Photocatalysis</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew. Chem. Int. Ed</addtitle><date>2014-07-21</date><risdate>2014</risdate><volume>53</volume><issue>30</issue><spage>7887</spage><epage>7891</epage><pages>7887-7891</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>Ideal solar‐to‐fuel photocatalysts must effectively harvest sunlight to generate significant quantities of long‐lived charge carriers necessary for chemical reactions. Here we demonstrate the merits of augmenting traditional photoelectrochemical cells with plasmonic nanoparticles to satisfy these daunting photocatalytic requirements. Electrochemical techniques were employed to elucidate the mechanics of plasmon‐mediated electron transfer within Au/TiO2 heterostructures under visible‐light (λ&gt;515 nm) irradiation in solution. Significantly, we discovered that these transferred electrons displayed excited‐state lifetimes two orders of magnitude longer than those of electrons photogenerated directly within TiO2 via UV excitation. These long‐lived electrons further enable visible‐light‐driven H2 evolution from water, heralding a new photocatalytic paradigm for solar energy conversion. Harvesting hot electrons: Plasmon‐mediated electron transfer (PMET) in plasmonic (Au/TiO2) photoanodes provides a unique pathway for procuring excited‐state electrons that exhibit lifetimes commensurate with the prolonged timescales required for solar photochemistry. These long‐lived electrons were harnessed for visible‐light‐driven hydrogen evolution from water (see picture).</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>24920227</pmid><doi>10.1002/anie.201404259</doi><tpages>5</tpages><edition>International ed. in English</edition></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2014-07, Vol.53 (30), p.7887-7891
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_1700984097
source Wiley Blackwell Single Titles
subjects Electron transfer
Excitation
Gold
Heterostructures
Hot electrons
Photocatalysis
photoelectrochemistry
Plasmonics
Semiconductors
Solar energy
solar energy conversion
surface plasmon resonance
Titanium dioxide
water splitting
title Prolonged Hot Electron Dynamics in Plasmonic-Metal/Semiconductor Heterostructures with Implications for Solar Photocatalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A12%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prolonged%20Hot%20Electron%20Dynamics%20in%20Plasmonic-Metal/Semiconductor%20Heterostructures%20with%20Implications%20for%20Solar%20Photocatalysis&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=DuChene,%20Joseph%20S.&rft.date=2014-07-21&rft.volume=53&rft.issue=30&rft.spage=7887&rft.epage=7891&rft.pages=7887-7891&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201404259&rft_dat=%3Cproquest_cross%3E1547542577%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545826662&rft_id=info:pmid/24920227&rfr_iscdi=true