The improvement of glowworm swarm optimization for continuous optimization problems

► The greedy acceptance criterion for the glowworms updating positions is proposed. ► The new formulas for the glowworms movement are proposed. ► Uniform design experiments were investigated the effect of parameters. ► The proposed improvement algorithms were effective than the classical algorithm....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2012-06, Vol.39 (7), p.6335-6342
Hauptverfasser: Wu, Bin, Qian, Cunhua, Ni, Weihong, Fan, Shuhai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6342
container_issue 7
container_start_page 6335
container_title Expert systems with applications
container_volume 39
creator Wu, Bin
Qian, Cunhua
Ni, Weihong
Fan, Shuhai
description ► The greedy acceptance criterion for the glowworms updating positions is proposed. ► The new formulas for the glowworms movement are proposed. ► Uniform design experiments were investigated the effect of parameters. ► The proposed improvement algorithms were effective than the classical algorithm. Glowworm swarm optimization (GSO) algorithm is the one of the newest nature inspired heuristics for optimization problems. In order to enhances accuracy and convergence rate of the GSO, two strategies about the movement phase of GSO are proposed. One is the greedy acceptance criteria for the glowworms update their position one-dimension by one-dimension. The other is the new movement formulas which are inspired by artificial bee colony algorithm (ABC) and particle swarm optimization (PSO). To compare and analyze the performance of our proposed improvement GSO, a number of experiments are carried out on a set of well-known benchmark global optimization problems. The effects of the parameters about the improvement algorithms are discussed by uniform design experiment. Numerical results reveal that the proposed algorithms can find better solutions when compared to classical GSO and other heuristic algorithms and are powerful search algorithms for various global optimization problems.
doi_str_mv 10.1016/j.eswa.2011.12.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1700980332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417411016885</els_id><sourcerecordid>1700980332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-8408eba301dbf58586b319c7682196b281a29d3ade618868938bfdc3541e56c33</originalsourceid><addsrcrecordid>eNqFkD9PwzAQxS0EEqXwBZgysiT47MSxJRZU8U-qxECZrcS5gKskLnbaCj49jsrCAsvdcL_37u4Rcgk0Awriep1h2FcZowAZsIxCeURmIEueilLxYzKjqijTHMr8lJyFsKaRoLSckZfVOya233i3wx6HMXFt8ta5_d75PomWsbrNaHv7VY3WDUnrfGLcMNph67bh9yya1B324ZyctFUX8OKnz8nr_d1q8Zgunx-eFrfL1HAhxlTmVGJdcQpN3RaykKLmoEwpJAMlaiahYqrhVYMCpBRScVm3jeFFDlgIw_mcXB184-KPLYZR9zYY7LpqwHicnl5UknLO_kdpXMmVylVE2QE13oXgsdUbb_vKf0Zo4oRe6ylsPYWtgekYZRTdHEQY_91Z9DoYi4PBxno0o26c_Uv-DYubiRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019639949</pqid></control><display><type>article</type><title>The improvement of glowworm swarm optimization for continuous optimization problems</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wu, Bin ; Qian, Cunhua ; Ni, Weihong ; Fan, Shuhai</creator><creatorcontrib>Wu, Bin ; Qian, Cunhua ; Ni, Weihong ; Fan, Shuhai</creatorcontrib><description>► The greedy acceptance criterion for the glowworms updating positions is proposed. ► The new formulas for the glowworms movement are proposed. ► Uniform design experiments were investigated the effect of parameters. ► The proposed improvement algorithms were effective than the classical algorithm. Glowworm swarm optimization (GSO) algorithm is the one of the newest nature inspired heuristics for optimization problems. In order to enhances accuracy and convergence rate of the GSO, two strategies about the movement phase of GSO are proposed. One is the greedy acceptance criteria for the glowworms update their position one-dimension by one-dimension. The other is the new movement formulas which are inspired by artificial bee colony algorithm (ABC) and particle swarm optimization (PSO). To compare and analyze the performance of our proposed improvement GSO, a number of experiments are carried out on a set of well-known benchmark global optimization problems. The effects of the parameters about the improvement algorithms are discussed by uniform design experiment. Numerical results reveal that the proposed algorithms can find better solutions when compared to classical GSO and other heuristic algorithms and are powerful search algorithms for various global optimization problems.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2011.12.017</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algorithms ; Artificial bee colony algorithm ; Continuous optimization ; Convergence ; Design engineering ; Expert systems ; Glowworm swarm optimization algorithm ; Mathematical models ; Movement ; Optimization ; Particle swarm optimization ; Strategy ; Uniform design</subject><ispartof>Expert systems with applications, 2012-06, Vol.39 (7), p.6335-6342</ispartof><rights>2011 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-8408eba301dbf58586b319c7682196b281a29d3ade618868938bfdc3541e56c33</citedby><cites>FETCH-LOGICAL-c366t-8408eba301dbf58586b319c7682196b281a29d3ade618868938bfdc3541e56c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0957417411016885$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Wu, Bin</creatorcontrib><creatorcontrib>Qian, Cunhua</creatorcontrib><creatorcontrib>Ni, Weihong</creatorcontrib><creatorcontrib>Fan, Shuhai</creatorcontrib><title>The improvement of glowworm swarm optimization for continuous optimization problems</title><title>Expert systems with applications</title><description>► The greedy acceptance criterion for the glowworms updating positions is proposed. ► The new formulas for the glowworms movement are proposed. ► Uniform design experiments were investigated the effect of parameters. ► The proposed improvement algorithms were effective than the classical algorithm. Glowworm swarm optimization (GSO) algorithm is the one of the newest nature inspired heuristics for optimization problems. In order to enhances accuracy and convergence rate of the GSO, two strategies about the movement phase of GSO are proposed. One is the greedy acceptance criteria for the glowworms update their position one-dimension by one-dimension. The other is the new movement formulas which are inspired by artificial bee colony algorithm (ABC) and particle swarm optimization (PSO). To compare and analyze the performance of our proposed improvement GSO, a number of experiments are carried out on a set of well-known benchmark global optimization problems. The effects of the parameters about the improvement algorithms are discussed by uniform design experiment. Numerical results reveal that the proposed algorithms can find better solutions when compared to classical GSO and other heuristic algorithms and are powerful search algorithms for various global optimization problems.</description><subject>Algorithms</subject><subject>Artificial bee colony algorithm</subject><subject>Continuous optimization</subject><subject>Convergence</subject><subject>Design engineering</subject><subject>Expert systems</subject><subject>Glowworm swarm optimization algorithm</subject><subject>Mathematical models</subject><subject>Movement</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Strategy</subject><subject>Uniform design</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkD9PwzAQxS0EEqXwBZgysiT47MSxJRZU8U-qxECZrcS5gKskLnbaCj49jsrCAsvdcL_37u4Rcgk0Awriep1h2FcZowAZsIxCeURmIEueilLxYzKjqijTHMr8lJyFsKaRoLSckZfVOya233i3wx6HMXFt8ta5_d75PomWsbrNaHv7VY3WDUnrfGLcMNph67bh9yya1B324ZyctFUX8OKnz8nr_d1q8Zgunx-eFrfL1HAhxlTmVGJdcQpN3RaykKLmoEwpJAMlaiahYqrhVYMCpBRScVm3jeFFDlgIw_mcXB184-KPLYZR9zYY7LpqwHicnl5UknLO_kdpXMmVylVE2QE13oXgsdUbb_vKf0Zo4oRe6ylsPYWtgekYZRTdHEQY_91Z9DoYi4PBxno0o26c_Uv-DYubiRw</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Wu, Bin</creator><creator>Qian, Cunhua</creator><creator>Ni, Weihong</creator><creator>Fan, Shuhai</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120601</creationdate><title>The improvement of glowworm swarm optimization for continuous optimization problems</title><author>Wu, Bin ; Qian, Cunhua ; Ni, Weihong ; Fan, Shuhai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-8408eba301dbf58586b319c7682196b281a29d3ade618868938bfdc3541e56c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Artificial bee colony algorithm</topic><topic>Continuous optimization</topic><topic>Convergence</topic><topic>Design engineering</topic><topic>Expert systems</topic><topic>Glowworm swarm optimization algorithm</topic><topic>Mathematical models</topic><topic>Movement</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Strategy</topic><topic>Uniform design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Bin</creatorcontrib><creatorcontrib>Qian, Cunhua</creatorcontrib><creatorcontrib>Ni, Weihong</creatorcontrib><creatorcontrib>Fan, Shuhai</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Bin</au><au>Qian, Cunhua</au><au>Ni, Weihong</au><au>Fan, Shuhai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The improvement of glowworm swarm optimization for continuous optimization problems</atitle><jtitle>Expert systems with applications</jtitle><date>2012-06-01</date><risdate>2012</risdate><volume>39</volume><issue>7</issue><spage>6335</spage><epage>6342</epage><pages>6335-6342</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>► The greedy acceptance criterion for the glowworms updating positions is proposed. ► The new formulas for the glowworms movement are proposed. ► Uniform design experiments were investigated the effect of parameters. ► The proposed improvement algorithms were effective than the classical algorithm. Glowworm swarm optimization (GSO) algorithm is the one of the newest nature inspired heuristics for optimization problems. In order to enhances accuracy and convergence rate of the GSO, two strategies about the movement phase of GSO are proposed. One is the greedy acceptance criteria for the glowworms update their position one-dimension by one-dimension. The other is the new movement formulas which are inspired by artificial bee colony algorithm (ABC) and particle swarm optimization (PSO). To compare and analyze the performance of our proposed improvement GSO, a number of experiments are carried out on a set of well-known benchmark global optimization problems. The effects of the parameters about the improvement algorithms are discussed by uniform design experiment. Numerical results reveal that the proposed algorithms can find better solutions when compared to classical GSO and other heuristic algorithms and are powerful search algorithms for various global optimization problems.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2011.12.017</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2012-06, Vol.39 (7), p.6335-6342
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_miscellaneous_1700980332
source Elsevier ScienceDirect Journals Complete
subjects Algorithms
Artificial bee colony algorithm
Continuous optimization
Convergence
Design engineering
Expert systems
Glowworm swarm optimization algorithm
Mathematical models
Movement
Optimization
Particle swarm optimization
Strategy
Uniform design
title The improvement of glowworm swarm optimization for continuous optimization problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A04%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20improvement%20of%20glowworm%20swarm%20optimization%20for%20continuous%20optimization%20problems&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Wu,%20Bin&rft.date=2012-06-01&rft.volume=39&rft.issue=7&rft.spage=6335&rft.epage=6342&rft.pages=6335-6342&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2011.12.017&rft_dat=%3Cproquest_cross%3E1700980332%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019639949&rft_id=info:pmid/&rft_els_id=S0957417411016885&rfr_iscdi=true