Two-dimensional Bloch electrons in perpendicular magnetic fields: An exact calculation of the Hofstadter butterfly spectrum
The problem of two-dimensional, independent electrons subject to a periodic potential and a uniform perpendicular magnetic field unveils surprisingly rich physics, as epitomized by the fractal energy spectrum known as Hofstadter's butterfly. It has hitherto been addressed using various approxim...
Gespeichert in:
Veröffentlicht in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2013-06, Vol.87 (23), Article 235429 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | |
container_title | Physical review. B, Condensed matter and materials physics |
container_volume | 87 |
creator | Janecek, S. Aichinger, M. Hernández, E. R. |
description | The problem of two-dimensional, independent electrons subject to a periodic potential and a uniform perpendicular magnetic field unveils surprisingly rich physics, as epitomized by the fractal energy spectrum known as Hofstadter's butterfly. It has hitherto been addressed using various approximations rooted in either the strong potential or the strong field limiting cases. Here, we report calculations of the full spectrum of the single-particle Schrodinger equation without further approximations. Our method is exact, up to numerical precision, for any combination of potential and uniform field strength. We first study a situation that corresponds to the strong potential limit, and compare the exact results to the predictions of a Hofstadter-like model. We then go on to analyze the evolution of the fractal spectrum from a Landau-like nearly free electron system to the Hofstadter tight-binding limit by tuning the amplitude of the modulation potential. |
doi_str_mv | 10.1103/PhysRevB.87.235429 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1700978571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1700978571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-12ff0380e53cbf1be61e9dc04a149956ba7811d9b5403ada2e7e9a51842adbc13</originalsourceid><addsrcrecordid>eNo1kF1LwzAUhosoOKd_wKtcetOZj2ZtvNuGOmGgyATvSpqcuEra1CRVh3_elunV-x54eOC8SXJJ8IwQzK6fdvvwDJ_LWZHPKOMZFUfJhHCO0-F6PR46FkWKCSWnyVkI7xiTTGR0kvxsv1yq6wbaULtWWrS0Tu0QWFDRuzagukUd-A5aXaveSo8a-dZCrBUyNVgdbtCiRfAtVURK2hGJgwg5g-IO0NqZEKWO4FHVxyGM3aPQjfK-OU9OjLQBLv5ymrzc3W5X63TzeP-wWmxSxaiIKaHGYFZg4ExVhlQwJyC0wpkcfhB8Xsm8IESLimeYSS0p5CAkJ0VGpa4UYdPk6uDtvPvoIcSyqYMCa2ULrg8lyTEWecHzEaUHVHkXggdTdr5upN-XBJfj0uX_0mWRl4el2S-7ZnaL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1700978571</pqid></control><display><type>article</type><title>Two-dimensional Bloch electrons in perpendicular magnetic fields: An exact calculation of the Hofstadter butterfly spectrum</title><source>American Physical Society Journals</source><creator>Janecek, S. ; Aichinger, M. ; Hernández, E. R.</creator><creatorcontrib>Janecek, S. ; Aichinger, M. ; Hernández, E. R.</creatorcontrib><description>The problem of two-dimensional, independent electrons subject to a periodic potential and a uniform perpendicular magnetic field unveils surprisingly rich physics, as epitomized by the fractal energy spectrum known as Hofstadter's butterfly. It has hitherto been addressed using various approximations rooted in either the strong potential or the strong field limiting cases. Here, we report calculations of the full spectrum of the single-particle Schrodinger equation without further approximations. Our method is exact, up to numerical precision, for any combination of potential and uniform field strength. We first study a situation that corresponds to the strong potential limit, and compare the exact results to the predictions of a Hofstadter-like model. We then go on to analyze the evolution of the fractal spectrum from a Landau-like nearly free electron system to the Hofstadter tight-binding limit by tuning the amplitude of the modulation potential.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.87.235429</identifier><language>eng</language><subject>Approximation ; Butterflies ; Condensed matter ; Fractal analysis ; Magnetic fields ; Mathematical models ; Schroedinger equation ; Two dimensional</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2013-06, Vol.87 (23), Article 235429</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-12ff0380e53cbf1be61e9dc04a149956ba7811d9b5403ada2e7e9a51842adbc13</citedby><cites>FETCH-LOGICAL-c329t-12ff0380e53cbf1be61e9dc04a149956ba7811d9b5403ada2e7e9a51842adbc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Janecek, S.</creatorcontrib><creatorcontrib>Aichinger, M.</creatorcontrib><creatorcontrib>Hernández, E. R.</creatorcontrib><title>Two-dimensional Bloch electrons in perpendicular magnetic fields: An exact calculation of the Hofstadter butterfly spectrum</title><title>Physical review. B, Condensed matter and materials physics</title><description>The problem of two-dimensional, independent electrons subject to a periodic potential and a uniform perpendicular magnetic field unveils surprisingly rich physics, as epitomized by the fractal energy spectrum known as Hofstadter's butterfly. It has hitherto been addressed using various approximations rooted in either the strong potential or the strong field limiting cases. Here, we report calculations of the full spectrum of the single-particle Schrodinger equation without further approximations. Our method is exact, up to numerical precision, for any combination of potential and uniform field strength. We first study a situation that corresponds to the strong potential limit, and compare the exact results to the predictions of a Hofstadter-like model. We then go on to analyze the evolution of the fractal spectrum from a Landau-like nearly free electron system to the Hofstadter tight-binding limit by tuning the amplitude of the modulation potential.</description><subject>Approximation</subject><subject>Butterflies</subject><subject>Condensed matter</subject><subject>Fractal analysis</subject><subject>Magnetic fields</subject><subject>Mathematical models</subject><subject>Schroedinger equation</subject><subject>Two dimensional</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo1kF1LwzAUhosoOKd_wKtcetOZj2ZtvNuGOmGgyATvSpqcuEra1CRVh3_elunV-x54eOC8SXJJ8IwQzK6fdvvwDJ_LWZHPKOMZFUfJhHCO0-F6PR46FkWKCSWnyVkI7xiTTGR0kvxsv1yq6wbaULtWWrS0Tu0QWFDRuzagukUd-A5aXaveSo8a-dZCrBUyNVgdbtCiRfAtVURK2hGJgwg5g-IO0NqZEKWO4FHVxyGM3aPQjfK-OU9OjLQBLv5ymrzc3W5X63TzeP-wWmxSxaiIKaHGYFZg4ExVhlQwJyC0wpkcfhB8Xsm8IESLimeYSS0p5CAkJ0VGpa4UYdPk6uDtvPvoIcSyqYMCa2ULrg8lyTEWecHzEaUHVHkXggdTdr5upN-XBJfj0uX_0mWRl4el2S-7ZnaL</recordid><startdate>20130625</startdate><enddate>20130625</enddate><creator>Janecek, S.</creator><creator>Aichinger, M.</creator><creator>Hernández, E. R.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130625</creationdate><title>Two-dimensional Bloch electrons in perpendicular magnetic fields: An exact calculation of the Hofstadter butterfly spectrum</title><author>Janecek, S. ; Aichinger, M. ; Hernández, E. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-12ff0380e53cbf1be61e9dc04a149956ba7811d9b5403ada2e7e9a51842adbc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation</topic><topic>Butterflies</topic><topic>Condensed matter</topic><topic>Fractal analysis</topic><topic>Magnetic fields</topic><topic>Mathematical models</topic><topic>Schroedinger equation</topic><topic>Two dimensional</topic><toplevel>online_resources</toplevel><creatorcontrib>Janecek, S.</creatorcontrib><creatorcontrib>Aichinger, M.</creatorcontrib><creatorcontrib>Hernández, E. R.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janecek, S.</au><au>Aichinger, M.</au><au>Hernández, E. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-dimensional Bloch electrons in perpendicular magnetic fields: An exact calculation of the Hofstadter butterfly spectrum</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2013-06-25</date><risdate>2013</risdate><volume>87</volume><issue>23</issue><artnum>235429</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>The problem of two-dimensional, independent electrons subject to a periodic potential and a uniform perpendicular magnetic field unveils surprisingly rich physics, as epitomized by the fractal energy spectrum known as Hofstadter's butterfly. It has hitherto been addressed using various approximations rooted in either the strong potential or the strong field limiting cases. Here, we report calculations of the full spectrum of the single-particle Schrodinger equation without further approximations. Our method is exact, up to numerical precision, for any combination of potential and uniform field strength. We first study a situation that corresponds to the strong potential limit, and compare the exact results to the predictions of a Hofstadter-like model. We then go on to analyze the evolution of the fractal spectrum from a Landau-like nearly free electron system to the Hofstadter tight-binding limit by tuning the amplitude of the modulation potential.</abstract><doi>10.1103/PhysRevB.87.235429</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1098-0121 |
ispartof | Physical review. B, Condensed matter and materials physics, 2013-06, Vol.87 (23), Article 235429 |
issn | 1098-0121 1550-235X |
language | eng |
recordid | cdi_proquest_miscellaneous_1700978571 |
source | American Physical Society Journals |
subjects | Approximation Butterflies Condensed matter Fractal analysis Magnetic fields Mathematical models Schroedinger equation Two dimensional |
title | Two-dimensional Bloch electrons in perpendicular magnetic fields: An exact calculation of the Hofstadter butterfly spectrum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A03%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-dimensional%20Bloch%20electrons%20in%20perpendicular%20magnetic%20fields:%20An%20exact%20calculation%20of%20the%20Hofstadter%20butterfly%20spectrum&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Janecek,%20S.&rft.date=2013-06-25&rft.volume=87&rft.issue=23&rft.artnum=235429&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.87.235429&rft_dat=%3Cproquest_cross%3E1700978571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1700978571&rft_id=info:pmid/&rfr_iscdi=true |