Time–frequency control of ultrafast plasma generation in dielectrics

This paper examines ultrafast laser-induced plasma generation in dielectrics by modeling ionization and pulse propagation in glass. Photoionization models for solids predict that the multi-photon ionization rate should increase for near-UV frequencies when compared to those in the visible or near-IR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. B, Optical physics Optical physics, 2014-12, Vol.31 (12), p.2973-2980
Hauptverfasser: Liao, Jiexi, Gulley, Jeremy R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper examines ultrafast laser-induced plasma generation in dielectrics by modeling ionization and pulse propagation in glass. Photoionization models for solids predict that the multi-photon ionization rate should increase for near-UV frequencies when compared to those in the visible or near-IR. Conversely, the frequency dependence of a Drude-type absorption by free electrons can produce an increased ionization yield through avalanching for frequencies in the IR. The simulations presented in this paper reveal how such frequency-dependent models influence the plasma formation during nonlinear pulse propagation in fused silica. It is further shown by a multi-rate equation model that the contribution from avalanching, when properly delayed, is reduced by an order of magnitude at near-IR frequencies throughout the propagation. A modified multi-rate equation is then introduced to model combinations of ultrashort high-frequency and low-frequency pulses that can maximize plasma generation while operating at the lowest possible fluences.
ISSN:0740-3224
1520-8540
DOI:10.1364/JOSAB.31.002973