Nonlinear regression-typological analysis of ecophysiological states of vegetation: a pilot study with small data sets

The interactions of environmental factors associated with forest decline were analyzed by a modified multidimensional scaling method. The method subdivides the entire data set into homogeneous classes; linear regression is then applied within each single class. A nonlinear picture of the interdepend...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tree physiology 1995, Vol.15 (12), p.765-774
Hauptverfasser: Perekrest, V.T, Khachaturova, T.V, Beresneva, I.B, Mitrofanova, N.M, Kunstle, E, Wagner, E, Fukshansky, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 774
container_issue 12
container_start_page 765
container_title Tree physiology
container_volume 15
creator Perekrest, V.T
Khachaturova, T.V
Beresneva, I.B
Mitrofanova, N.M
Kunstle, E
Wagner, E
Fukshansky, L
description The interactions of environmental factors associated with forest decline were analyzed by a modified multidimensional scaling method. The method subdivides the entire data set into homogeneous classes; linear regression is then applied within each single class. A nonlinear picture of the interdependence of the effects of different factors is developed as a composite of the contributions from each single class. The analysis was performed on a restricted data set, and the results compared with some expected effects and with results obtained by standard linear regression. Even with the limited data set, multidimensional scaling not only explained expected effects but also revealed new information. We conclude that the method will be useful for analyzing complex time series data because it is able to detect complex interactions between environmental variables that affect physiological parameters.
doi_str_mv 10.1093/treephys/15.12.765
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17008555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17008555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-6a7dbced6658eb3f60cf5875c0791b85a9e9b7a592d0e2138b5590d9f64936253</originalsourceid><addsrcrecordid>eNo9kMFu2zAMhoViA5plfYFeqtNuTiUrsqXdimJrBwTboS3Qm0DbdKJCsTxRaeG3n7N0OxHE9_8k8DF2KcVKCquuc0IcdxNdS72S5aqu9BlbyFqbYr2u7Ae2EKa0hZLm-Zx9InoRQmpj7IK9_oxD8ANC4gm3CYl8HIo8jTHErW8hcBggTOSJx55jG49f_H9IGTL-Ra-4xXmZ21858NGHmGd66Cb-5vOO0x5C4B1k4ISZPrOPPQTCi_e5ZE_fvz3e3hebX3c_bm82RauEyEUFdde02FWVNtiovhJtr02tW1Fb2RgNFm1Tg7ZlJ7CUyjRaW9HZvlpbVZVaLdmX090xxd8HpOz2nloMAQaMB3KyFsJofQyWp2CbIlHC3o3J7yFNTgp3VOz-KXZSO1m6WfFcujqVeogOtsmTe3oohVSzXWlsvVZ_AMhsflA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17008555</pqid></control><display><type>article</type><title>Nonlinear regression-typological analysis of ecophysiological states of vegetation: a pilot study with small data sets</title><source>Oxford University Press Journals Digital Archive legacy</source><creator>Perekrest, V.T ; Khachaturova, T.V ; Beresneva, I.B ; Mitrofanova, N.M ; Kunstle, E ; Wagner, E ; Fukshansky, L</creator><creatorcontrib>Perekrest, V.T ; Khachaturova, T.V ; Beresneva, I.B ; Mitrofanova, N.M ; Kunstle, E ; Wagner, E ; Fukshansky, L</creatorcontrib><description>The interactions of environmental factors associated with forest decline were analyzed by a modified multidimensional scaling method. The method subdivides the entire data set into homogeneous classes; linear regression is then applied within each single class. A nonlinear picture of the interdependence of the effects of different factors is developed as a composite of the contributions from each single class. The analysis was performed on a restricted data set, and the results compared with some expected effects and with results obtained by standard linear regression. Even with the limited data set, multidimensional scaling not only explained expected effects but also revealed new information. We conclude that the method will be useful for analyzing complex time series data because it is able to detect complex interactions between environmental variables that affect physiological parameters.</description><identifier>ISSN: 0829-318X</identifier><identifier>EISSN: 1758-4469</identifier><identifier>DOI: 10.1093/treephys/15.12.765</identifier><language>eng</language><subject>climatic factors ; equations ; forest decline ; forest ecology ; mathematical models ; measurement ; regression analysis ; vegetation</subject><ispartof>Tree physiology, 1995, Vol.15 (12), p.765-774</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-6a7dbced6658eb3f60cf5875c0791b85a9e9b7a592d0e2138b5590d9f64936253</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Perekrest, V.T</creatorcontrib><creatorcontrib>Khachaturova, T.V</creatorcontrib><creatorcontrib>Beresneva, I.B</creatorcontrib><creatorcontrib>Mitrofanova, N.M</creatorcontrib><creatorcontrib>Kunstle, E</creatorcontrib><creatorcontrib>Wagner, E</creatorcontrib><creatorcontrib>Fukshansky, L</creatorcontrib><title>Nonlinear regression-typological analysis of ecophysiological states of vegetation: a pilot study with small data sets</title><title>Tree physiology</title><description>The interactions of environmental factors associated with forest decline were analyzed by a modified multidimensional scaling method. The method subdivides the entire data set into homogeneous classes; linear regression is then applied within each single class. A nonlinear picture of the interdependence of the effects of different factors is developed as a composite of the contributions from each single class. The analysis was performed on a restricted data set, and the results compared with some expected effects and with results obtained by standard linear regression. Even with the limited data set, multidimensional scaling not only explained expected effects but also revealed new information. We conclude that the method will be useful for analyzing complex time series data because it is able to detect complex interactions between environmental variables that affect physiological parameters.</description><subject>climatic factors</subject><subject>equations</subject><subject>forest decline</subject><subject>forest ecology</subject><subject>mathematical models</subject><subject>measurement</subject><subject>regression analysis</subject><subject>vegetation</subject><issn>0829-318X</issn><issn>1758-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNo9kMFu2zAMhoViA5plfYFeqtNuTiUrsqXdimJrBwTboS3Qm0DbdKJCsTxRaeG3n7N0OxHE9_8k8DF2KcVKCquuc0IcdxNdS72S5aqu9BlbyFqbYr2u7Ae2EKa0hZLm-Zx9InoRQmpj7IK9_oxD8ANC4gm3CYl8HIo8jTHErW8hcBggTOSJx55jG49f_H9IGTL-Ra-4xXmZ21858NGHmGd66Cb-5vOO0x5C4B1k4ISZPrOPPQTCi_e5ZE_fvz3e3hebX3c_bm82RauEyEUFdde02FWVNtiovhJtr02tW1Fb2RgNFm1Tg7ZlJ7CUyjRaW9HZvlpbVZVaLdmX090xxd8HpOz2nloMAQaMB3KyFsJofQyWp2CbIlHC3o3J7yFNTgp3VOz-KXZSO1m6WfFcujqVeogOtsmTe3oohVSzXWlsvVZ_AMhsflA</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Perekrest, V.T</creator><creator>Khachaturova, T.V</creator><creator>Beresneva, I.B</creator><creator>Mitrofanova, N.M</creator><creator>Kunstle, E</creator><creator>Wagner, E</creator><creator>Fukshansky, L</creator><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>C1K</scope></search><sort><creationdate>1995</creationdate><title>Nonlinear regression-typological analysis of ecophysiological states of vegetation: a pilot study with small data sets</title><author>Perekrest, V.T ; Khachaturova, T.V ; Beresneva, I.B ; Mitrofanova, N.M ; Kunstle, E ; Wagner, E ; Fukshansky, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-6a7dbced6658eb3f60cf5875c0791b85a9e9b7a592d0e2138b5590d9f64936253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>climatic factors</topic><topic>equations</topic><topic>forest decline</topic><topic>forest ecology</topic><topic>mathematical models</topic><topic>measurement</topic><topic>regression analysis</topic><topic>vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perekrest, V.T</creatorcontrib><creatorcontrib>Khachaturova, T.V</creatorcontrib><creatorcontrib>Beresneva, I.B</creatorcontrib><creatorcontrib>Mitrofanova, N.M</creatorcontrib><creatorcontrib>Kunstle, E</creatorcontrib><creatorcontrib>Wagner, E</creatorcontrib><creatorcontrib>Fukshansky, L</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Tree physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perekrest, V.T</au><au>Khachaturova, T.V</au><au>Beresneva, I.B</au><au>Mitrofanova, N.M</au><au>Kunstle, E</au><au>Wagner, E</au><au>Fukshansky, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear regression-typological analysis of ecophysiological states of vegetation: a pilot study with small data sets</atitle><jtitle>Tree physiology</jtitle><date>1995</date><risdate>1995</risdate><volume>15</volume><issue>12</issue><spage>765</spage><epage>774</epage><pages>765-774</pages><issn>0829-318X</issn><eissn>1758-4469</eissn><abstract>The interactions of environmental factors associated with forest decline were analyzed by a modified multidimensional scaling method. The method subdivides the entire data set into homogeneous classes; linear regression is then applied within each single class. A nonlinear picture of the interdependence of the effects of different factors is developed as a composite of the contributions from each single class. The analysis was performed on a restricted data set, and the results compared with some expected effects and with results obtained by standard linear regression. Even with the limited data set, multidimensional scaling not only explained expected effects but also revealed new information. We conclude that the method will be useful for analyzing complex time series data because it is able to detect complex interactions between environmental variables that affect physiological parameters.</abstract><doi>10.1093/treephys/15.12.765</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0829-318X
ispartof Tree physiology, 1995, Vol.15 (12), p.765-774
issn 0829-318X
1758-4469
language eng
recordid cdi_proquest_miscellaneous_17008555
source Oxford University Press Journals Digital Archive legacy
subjects climatic factors
equations
forest decline
forest ecology
mathematical models
measurement
regression analysis
vegetation
title Nonlinear regression-typological analysis of ecophysiological states of vegetation: a pilot study with small data sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A56%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20regression-typological%20analysis%20of%20ecophysiological%20states%20of%20vegetation:%20a%20pilot%20study%20with%20small%20data%20sets&rft.jtitle=Tree%20physiology&rft.au=Perekrest,%20V.T&rft.date=1995&rft.volume=15&rft.issue=12&rft.spage=765&rft.epage=774&rft.pages=765-774&rft.issn=0829-318X&rft.eissn=1758-4469&rft_id=info:doi/10.1093/treephys/15.12.765&rft_dat=%3Cproquest_cross%3E17008555%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17008555&rft_id=info:pmid/&rfr_iscdi=true