Nonlinear regression-typological analysis of ecophysiological states of vegetation: a pilot study with small data sets
The interactions of environmental factors associated with forest decline were analyzed by a modified multidimensional scaling method. The method subdivides the entire data set into homogeneous classes; linear regression is then applied within each single class. A nonlinear picture of the interdepend...
Gespeichert in:
Veröffentlicht in: | Tree physiology 1995, Vol.15 (12), p.765-774 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 774 |
---|---|
container_issue | 12 |
container_start_page | 765 |
container_title | Tree physiology |
container_volume | 15 |
creator | Perekrest, V.T Khachaturova, T.V Beresneva, I.B Mitrofanova, N.M Kunstle, E Wagner, E Fukshansky, L |
description | The interactions of environmental factors associated with forest decline were analyzed by a modified multidimensional scaling method. The method subdivides the entire data set into homogeneous classes; linear regression is then applied within each single class. A nonlinear picture of the interdependence of the effects of different factors is developed as a composite of the contributions from each single class. The analysis was performed on a restricted data set, and the results compared with some expected effects and with results obtained by standard linear regression. Even with the limited data set, multidimensional scaling not only explained expected effects but also revealed new information. We conclude that the method will be useful for analyzing complex time series data because it is able to detect complex interactions between environmental variables that affect physiological parameters. |
doi_str_mv | 10.1093/treephys/15.12.765 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17008555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17008555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-6a7dbced6658eb3f60cf5875c0791b85a9e9b7a592d0e2138b5590d9f64936253</originalsourceid><addsrcrecordid>eNo9kMFu2zAMhoViA5plfYFeqtNuTiUrsqXdimJrBwTboS3Qm0DbdKJCsTxRaeG3n7N0OxHE9_8k8DF2KcVKCquuc0IcdxNdS72S5aqu9BlbyFqbYr2u7Ae2EKa0hZLm-Zx9InoRQmpj7IK9_oxD8ANC4gm3CYl8HIo8jTHErW8hcBggTOSJx55jG49f_H9IGTL-Ra-4xXmZ21858NGHmGd66Cb-5vOO0x5C4B1k4ISZPrOPPQTCi_e5ZE_fvz3e3hebX3c_bm82RauEyEUFdde02FWVNtiovhJtr02tW1Fb2RgNFm1Tg7ZlJ7CUyjRaW9HZvlpbVZVaLdmX090xxd8HpOz2nloMAQaMB3KyFsJofQyWp2CbIlHC3o3J7yFNTgp3VOz-KXZSO1m6WfFcujqVeogOtsmTe3oohVSzXWlsvVZ_AMhsflA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17008555</pqid></control><display><type>article</type><title>Nonlinear regression-typological analysis of ecophysiological states of vegetation: a pilot study with small data sets</title><source>Oxford University Press Journals Digital Archive legacy</source><creator>Perekrest, V.T ; Khachaturova, T.V ; Beresneva, I.B ; Mitrofanova, N.M ; Kunstle, E ; Wagner, E ; Fukshansky, L</creator><creatorcontrib>Perekrest, V.T ; Khachaturova, T.V ; Beresneva, I.B ; Mitrofanova, N.M ; Kunstle, E ; Wagner, E ; Fukshansky, L</creatorcontrib><description>The interactions of environmental factors associated with forest decline were analyzed by a modified multidimensional scaling method. The method subdivides the entire data set into homogeneous classes; linear regression is then applied within each single class. A nonlinear picture of the interdependence of the effects of different factors is developed as a composite of the contributions from each single class. The analysis was performed on a restricted data set, and the results compared with some expected effects and with results obtained by standard linear regression. Even with the limited data set, multidimensional scaling not only explained expected effects but also revealed new information. We conclude that the method will be useful for analyzing complex time series data because it is able to detect complex interactions between environmental variables that affect physiological parameters.</description><identifier>ISSN: 0829-318X</identifier><identifier>EISSN: 1758-4469</identifier><identifier>DOI: 10.1093/treephys/15.12.765</identifier><language>eng</language><subject>climatic factors ; equations ; forest decline ; forest ecology ; mathematical models ; measurement ; regression analysis ; vegetation</subject><ispartof>Tree physiology, 1995, Vol.15 (12), p.765-774</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-6a7dbced6658eb3f60cf5875c0791b85a9e9b7a592d0e2138b5590d9f64936253</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Perekrest, V.T</creatorcontrib><creatorcontrib>Khachaturova, T.V</creatorcontrib><creatorcontrib>Beresneva, I.B</creatorcontrib><creatorcontrib>Mitrofanova, N.M</creatorcontrib><creatorcontrib>Kunstle, E</creatorcontrib><creatorcontrib>Wagner, E</creatorcontrib><creatorcontrib>Fukshansky, L</creatorcontrib><title>Nonlinear regression-typological analysis of ecophysiological states of vegetation: a pilot study with small data sets</title><title>Tree physiology</title><description>The interactions of environmental factors associated with forest decline were analyzed by a modified multidimensional scaling method. The method subdivides the entire data set into homogeneous classes; linear regression is then applied within each single class. A nonlinear picture of the interdependence of the effects of different factors is developed as a composite of the contributions from each single class. The analysis was performed on a restricted data set, and the results compared with some expected effects and with results obtained by standard linear regression. Even with the limited data set, multidimensional scaling not only explained expected effects but also revealed new information. We conclude that the method will be useful for analyzing complex time series data because it is able to detect complex interactions between environmental variables that affect physiological parameters.</description><subject>climatic factors</subject><subject>equations</subject><subject>forest decline</subject><subject>forest ecology</subject><subject>mathematical models</subject><subject>measurement</subject><subject>regression analysis</subject><subject>vegetation</subject><issn>0829-318X</issn><issn>1758-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNo9kMFu2zAMhoViA5plfYFeqtNuTiUrsqXdimJrBwTboS3Qm0DbdKJCsTxRaeG3n7N0OxHE9_8k8DF2KcVKCquuc0IcdxNdS72S5aqu9BlbyFqbYr2u7Ae2EKa0hZLm-Zx9InoRQmpj7IK9_oxD8ANC4gm3CYl8HIo8jTHErW8hcBggTOSJx55jG49f_H9IGTL-Ra-4xXmZ21858NGHmGd66Cb-5vOO0x5C4B1k4ISZPrOPPQTCi_e5ZE_fvz3e3hebX3c_bm82RauEyEUFdde02FWVNtiovhJtr02tW1Fb2RgNFm1Tg7ZlJ7CUyjRaW9HZvlpbVZVaLdmX090xxd8HpOz2nloMAQaMB3KyFsJofQyWp2CbIlHC3o3J7yFNTgp3VOz-KXZSO1m6WfFcujqVeogOtsmTe3oohVSzXWlsvVZ_AMhsflA</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Perekrest, V.T</creator><creator>Khachaturova, T.V</creator><creator>Beresneva, I.B</creator><creator>Mitrofanova, N.M</creator><creator>Kunstle, E</creator><creator>Wagner, E</creator><creator>Fukshansky, L</creator><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>C1K</scope></search><sort><creationdate>1995</creationdate><title>Nonlinear regression-typological analysis of ecophysiological states of vegetation: a pilot study with small data sets</title><author>Perekrest, V.T ; Khachaturova, T.V ; Beresneva, I.B ; Mitrofanova, N.M ; Kunstle, E ; Wagner, E ; Fukshansky, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-6a7dbced6658eb3f60cf5875c0791b85a9e9b7a592d0e2138b5590d9f64936253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>climatic factors</topic><topic>equations</topic><topic>forest decline</topic><topic>forest ecology</topic><topic>mathematical models</topic><topic>measurement</topic><topic>regression analysis</topic><topic>vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perekrest, V.T</creatorcontrib><creatorcontrib>Khachaturova, T.V</creatorcontrib><creatorcontrib>Beresneva, I.B</creatorcontrib><creatorcontrib>Mitrofanova, N.M</creatorcontrib><creatorcontrib>Kunstle, E</creatorcontrib><creatorcontrib>Wagner, E</creatorcontrib><creatorcontrib>Fukshansky, L</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Tree physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perekrest, V.T</au><au>Khachaturova, T.V</au><au>Beresneva, I.B</au><au>Mitrofanova, N.M</au><au>Kunstle, E</au><au>Wagner, E</au><au>Fukshansky, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear regression-typological analysis of ecophysiological states of vegetation: a pilot study with small data sets</atitle><jtitle>Tree physiology</jtitle><date>1995</date><risdate>1995</risdate><volume>15</volume><issue>12</issue><spage>765</spage><epage>774</epage><pages>765-774</pages><issn>0829-318X</issn><eissn>1758-4469</eissn><abstract>The interactions of environmental factors associated with forest decline were analyzed by a modified multidimensional scaling method. The method subdivides the entire data set into homogeneous classes; linear regression is then applied within each single class. A nonlinear picture of the interdependence of the effects of different factors is developed as a composite of the contributions from each single class. The analysis was performed on a restricted data set, and the results compared with some expected effects and with results obtained by standard linear regression. Even with the limited data set, multidimensional scaling not only explained expected effects but also revealed new information. We conclude that the method will be useful for analyzing complex time series data because it is able to detect complex interactions between environmental variables that affect physiological parameters.</abstract><doi>10.1093/treephys/15.12.765</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0829-318X |
ispartof | Tree physiology, 1995, Vol.15 (12), p.765-774 |
issn | 0829-318X 1758-4469 |
language | eng |
recordid | cdi_proquest_miscellaneous_17008555 |
source | Oxford University Press Journals Digital Archive legacy |
subjects | climatic factors equations forest decline forest ecology mathematical models measurement regression analysis vegetation |
title | Nonlinear regression-typological analysis of ecophysiological states of vegetation: a pilot study with small data sets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A56%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20regression-typological%20analysis%20of%20ecophysiological%20states%20of%20vegetation:%20a%20pilot%20study%20with%20small%20data%20sets&rft.jtitle=Tree%20physiology&rft.au=Perekrest,%20V.T&rft.date=1995&rft.volume=15&rft.issue=12&rft.spage=765&rft.epage=774&rft.pages=765-774&rft.issn=0829-318X&rft.eissn=1758-4469&rft_id=info:doi/10.1093/treephys/15.12.765&rft_dat=%3Cproquest_cross%3E17008555%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17008555&rft_id=info:pmid/&rfr_iscdi=true |