The prognostic impact of age in different molecular subtypes of breast cancer

Breast cancer is a heterogeneous entity composed of distinct molecular subgroups with different molecular and clinical features. We analyzed the association between molecular breast cancer subgroups, age at diagnosis, and prognosis in a compilation of publicly available gene expression datasets. Aff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Breast cancer research and treatment 2015-08, Vol.152 (3), p.667-673
Hauptverfasser: Liedtke, Cornelia, Rody, Achim, Gluz, Oleg, Baumann, Kristin, Beyer, Daniel, Kohls, Eva-Beatrice, Lausen, Kerstin, Hanker, Lars, Holtrich, Uwe, Becker, Sven, Karn, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 673
container_issue 3
container_start_page 667
container_title Breast cancer research and treatment
container_volume 152
creator Liedtke, Cornelia
Rody, Achim
Gluz, Oleg
Baumann, Kristin
Beyer, Daniel
Kohls, Eva-Beatrice
Lausen, Kerstin
Hanker, Lars
Holtrich, Uwe
Becker, Sven
Karn, Thomas
description Breast cancer is a heterogeneous entity composed of distinct molecular subgroups with different molecular and clinical features. We analyzed the association between molecular breast cancer subgroups, age at diagnosis, and prognosis in a compilation of publicly available gene expression datasets. Affymetrix gene expression data (U133A or U133Plus2.0 arrays) of 4467 breast cancers from 40 datasets were compiled and homogenized. Breast cancer subgroups were defined based on expression of ESR1, PR, HER2, and Ki67. Event-free survival was calculated as recurrence-free survival or distant metastasis-free survival if recurrence-free survival was not available. Young age at diagnosis is associated with higher frequency of triple negative and HER2 subtypes and lower frequency of luminal A breast cancers. The 5-year event-free survival rates of patients aged less than 40, between 40 and 50, and >50 years were 54.3 ± 3.5, 68.5 ± 1.9, and 70.4 ± 1.3 %, respectively. When controlling for breast cancer subtype, we found that age
doi_str_mv 10.1007/s10549-015-3491-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1700683731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A437878050</galeid><sourcerecordid>A437878050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-869b6c4b1983d28887d700fda7267ffc588cf12daa1095974ed6bd669e38d3493</originalsourceid><addsrcrecordid>eNp1kUFvFSEUhYnR2Gf1B7gxk5iYbqZehhlglk2j1aTGTV0TBi7v0czAE5hF_708X9XWaFiQwHfOvSeHkNcUzimAeJ8pDP3YAh1a1o-0ZU_Ihg6CtaKj4inZAOWi5RL4CXmR8y0AjALG5-Sk43QcaAcb8uVmh80-xW2IuXjT-GWvTWmia_QWGx8a653DhKE0S5zRrLNOTV6ncrfHfMCmhDqXxuhgML0kz5yeM766v0_Jt48fbi4_tddfrz5fXly3phdQWsnHiZt-oqNktpNSCisAnNWi48I5M0hpHO2s1hTGYRQ9Wj5Zzkdk0tak7JScHX3r5t9XzEUtPhucZx0wrlnRasclE4xW9O1f6G1cU6jb_aSA1_nwh9rqGZUPLpakzcFUXfRMSCFhOFDn_6Dqsbh4EwM6X98fCd49EOxQz2WX47wWH0N-DNIjaFLMOaFT--QXne4UBXXoWh27VrVrdehasap5c59snRa0vxW_yq1AdwRy_QpbTA-i_9f1B8WesEE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1700062880</pqid></control><display><type>article</type><title>The prognostic impact of age in different molecular subtypes of breast cancer</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Liedtke, Cornelia ; Rody, Achim ; Gluz, Oleg ; Baumann, Kristin ; Beyer, Daniel ; Kohls, Eva-Beatrice ; Lausen, Kerstin ; Hanker, Lars ; Holtrich, Uwe ; Becker, Sven ; Karn, Thomas</creator><creatorcontrib>Liedtke, Cornelia ; Rody, Achim ; Gluz, Oleg ; Baumann, Kristin ; Beyer, Daniel ; Kohls, Eva-Beatrice ; Lausen, Kerstin ; Hanker, Lars ; Holtrich, Uwe ; Becker, Sven ; Karn, Thomas</creatorcontrib><description>Breast cancer is a heterogeneous entity composed of distinct molecular subgroups with different molecular and clinical features. We analyzed the association between molecular breast cancer subgroups, age at diagnosis, and prognosis in a compilation of publicly available gene expression datasets. Affymetrix gene expression data (U133A or U133Plus2.0 arrays) of 4467 breast cancers from 40 datasets were compiled and homogenized. Breast cancer subgroups were defined based on expression of ESR1, PR, HER2, and Ki67. Event-free survival was calculated as recurrence-free survival or distant metastasis-free survival if recurrence-free survival was not available. Young age at diagnosis is associated with higher frequency of triple negative and HER2 subtypes and lower frequency of luminal A breast cancers. The 5-year event-free survival rates of patients aged less than 40, between 40 and 50, and &gt;50 years were 54.3 ± 3.5, 68.5 ± 1.9, and 70.4 ± 1.3 %, respectively. When controlling for breast cancer subtype, we found that age &lt;40 years remained significantly associated with poor prognosis in triple negative breast cancer. The effect was modest in luminal tumors and not found in HER2 subtype. Both subtypes and age retained their significances in multivariate analysis. Association of age at diagnosis with molecular breast cancer subtype contributes to its important role as prognostic factor among patients with breast cancer. Still, within the group of triple negative breast cancer, young age &lt;40 years has a significant prognostic value which was retained in multivariate analysis.</description><identifier>ISSN: 0167-6806</identifier><identifier>EISSN: 1573-7217</identifier><identifier>DOI: 10.1007/s10549-015-3491-3</identifier><identifier>PMID: 26195120</identifier><identifier>CODEN: BCTRD6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adult ; Age Factors ; Analysis ; Biomarkers, Tumor - analysis ; Biomarkers, Tumor - genetics ; Biomarkers, Tumor - metabolism ; Breast cancer ; Breast Neoplasms - drug therapy ; Breast Neoplasms - metabolism ; Breast Neoplasms - mortality ; Breast Neoplasms - pathology ; Cancer research ; Cancer therapies ; Disease-Free Survival ; Epidemiology ; Estrogen Receptor alpha - genetics ; Estrogen Receptor alpha - metabolism ; Female ; Gene expression ; Gene Expression Profiling ; Humans ; Ki-67 Antigen - genetics ; Ki-67 Antigen - metabolism ; Lymphatic Metastasis - pathology ; Medicine ; Medicine &amp; Public Health ; Middle Aged ; Molecular biology ; Multivariate Analysis ; Oncology ; Prognosis ; Receptor, ErbB-2 - genetics ; Receptor, ErbB-2 - metabolism ; Receptors, Progesterone - genetics ; Receptors, Progesterone - metabolism ; Studies ; Tissue Array Analysis</subject><ispartof>Breast cancer research and treatment, 2015-08, Vol.152 (3), p.667-673</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>COPYRIGHT 2015 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-869b6c4b1983d28887d700fda7267ffc588cf12daa1095974ed6bd669e38d3493</citedby><cites>FETCH-LOGICAL-c470t-869b6c4b1983d28887d700fda7267ffc588cf12daa1095974ed6bd669e38d3493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10549-015-3491-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10549-015-3491-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26195120$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liedtke, Cornelia</creatorcontrib><creatorcontrib>Rody, Achim</creatorcontrib><creatorcontrib>Gluz, Oleg</creatorcontrib><creatorcontrib>Baumann, Kristin</creatorcontrib><creatorcontrib>Beyer, Daniel</creatorcontrib><creatorcontrib>Kohls, Eva-Beatrice</creatorcontrib><creatorcontrib>Lausen, Kerstin</creatorcontrib><creatorcontrib>Hanker, Lars</creatorcontrib><creatorcontrib>Holtrich, Uwe</creatorcontrib><creatorcontrib>Becker, Sven</creatorcontrib><creatorcontrib>Karn, Thomas</creatorcontrib><title>The prognostic impact of age in different molecular subtypes of breast cancer</title><title>Breast cancer research and treatment</title><addtitle>Breast Cancer Res Treat</addtitle><addtitle>Breast Cancer Res Treat</addtitle><description>Breast cancer is a heterogeneous entity composed of distinct molecular subgroups with different molecular and clinical features. We analyzed the association between molecular breast cancer subgroups, age at diagnosis, and prognosis in a compilation of publicly available gene expression datasets. Affymetrix gene expression data (U133A or U133Plus2.0 arrays) of 4467 breast cancers from 40 datasets were compiled and homogenized. Breast cancer subgroups were defined based on expression of ESR1, PR, HER2, and Ki67. Event-free survival was calculated as recurrence-free survival or distant metastasis-free survival if recurrence-free survival was not available. Young age at diagnosis is associated with higher frequency of triple negative and HER2 subtypes and lower frequency of luminal A breast cancers. The 5-year event-free survival rates of patients aged less than 40, between 40 and 50, and &gt;50 years were 54.3 ± 3.5, 68.5 ± 1.9, and 70.4 ± 1.3 %, respectively. When controlling for breast cancer subtype, we found that age &lt;40 years remained significantly associated with poor prognosis in triple negative breast cancer. The effect was modest in luminal tumors and not found in HER2 subtype. Both subtypes and age retained their significances in multivariate analysis. Association of age at diagnosis with molecular breast cancer subtype contributes to its important role as prognostic factor among patients with breast cancer. Still, within the group of triple negative breast cancer, young age &lt;40 years has a significant prognostic value which was retained in multivariate analysis.</description><subject>Adult</subject><subject>Age Factors</subject><subject>Analysis</subject><subject>Biomarkers, Tumor - analysis</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - drug therapy</subject><subject>Breast Neoplasms - metabolism</subject><subject>Breast Neoplasms - mortality</subject><subject>Breast Neoplasms - pathology</subject><subject>Cancer research</subject><subject>Cancer therapies</subject><subject>Disease-Free Survival</subject><subject>Epidemiology</subject><subject>Estrogen Receptor alpha - genetics</subject><subject>Estrogen Receptor alpha - metabolism</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Humans</subject><subject>Ki-67 Antigen - genetics</subject><subject>Ki-67 Antigen - metabolism</subject><subject>Lymphatic Metastasis - pathology</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Middle Aged</subject><subject>Molecular biology</subject><subject>Multivariate Analysis</subject><subject>Oncology</subject><subject>Prognosis</subject><subject>Receptor, ErbB-2 - genetics</subject><subject>Receptor, ErbB-2 - metabolism</subject><subject>Receptors, Progesterone - genetics</subject><subject>Receptors, Progesterone - metabolism</subject><subject>Studies</subject><subject>Tissue Array Analysis</subject><issn>0167-6806</issn><issn>1573-7217</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kUFvFSEUhYnR2Gf1B7gxk5iYbqZehhlglk2j1aTGTV0TBi7v0czAE5hF_708X9XWaFiQwHfOvSeHkNcUzimAeJ8pDP3YAh1a1o-0ZU_Ihg6CtaKj4inZAOWi5RL4CXmR8y0AjALG5-Sk43QcaAcb8uVmh80-xW2IuXjT-GWvTWmia_QWGx8a653DhKE0S5zRrLNOTV6ncrfHfMCmhDqXxuhgML0kz5yeM766v0_Jt48fbi4_tddfrz5fXly3phdQWsnHiZt-oqNktpNSCisAnNWi48I5M0hpHO2s1hTGYRQ9Wj5Zzkdk0tak7JScHX3r5t9XzEUtPhucZx0wrlnRasclE4xW9O1f6G1cU6jb_aSA1_nwh9rqGZUPLpakzcFUXfRMSCFhOFDn_6Dqsbh4EwM6X98fCd49EOxQz2WX47wWH0N-DNIjaFLMOaFT--QXne4UBXXoWh27VrVrdehasap5c59snRa0vxW_yq1AdwRy_QpbTA-i_9f1B8WesEE</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Liedtke, Cornelia</creator><creator>Rody, Achim</creator><creator>Gluz, Oleg</creator><creator>Baumann, Kristin</creator><creator>Beyer, Daniel</creator><creator>Kohls, Eva-Beatrice</creator><creator>Lausen, Kerstin</creator><creator>Hanker, Lars</creator><creator>Holtrich, Uwe</creator><creator>Becker, Sven</creator><creator>Karn, Thomas</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>K9-</scope><scope>K9.</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20150801</creationdate><title>The prognostic impact of age in different molecular subtypes of breast cancer</title><author>Liedtke, Cornelia ; Rody, Achim ; Gluz, Oleg ; Baumann, Kristin ; Beyer, Daniel ; Kohls, Eva-Beatrice ; Lausen, Kerstin ; Hanker, Lars ; Holtrich, Uwe ; Becker, Sven ; Karn, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-869b6c4b1983d28887d700fda7267ffc588cf12daa1095974ed6bd669e38d3493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adult</topic><topic>Age Factors</topic><topic>Analysis</topic><topic>Biomarkers, Tumor - analysis</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - drug therapy</topic><topic>Breast Neoplasms - metabolism</topic><topic>Breast Neoplasms - mortality</topic><topic>Breast Neoplasms - pathology</topic><topic>Cancer research</topic><topic>Cancer therapies</topic><topic>Disease-Free Survival</topic><topic>Epidemiology</topic><topic>Estrogen Receptor alpha - genetics</topic><topic>Estrogen Receptor alpha - metabolism</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Humans</topic><topic>Ki-67 Antigen - genetics</topic><topic>Ki-67 Antigen - metabolism</topic><topic>Lymphatic Metastasis - pathology</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Middle Aged</topic><topic>Molecular biology</topic><topic>Multivariate Analysis</topic><topic>Oncology</topic><topic>Prognosis</topic><topic>Receptor, ErbB-2 - genetics</topic><topic>Receptor, ErbB-2 - metabolism</topic><topic>Receptors, Progesterone - genetics</topic><topic>Receptors, Progesterone - metabolism</topic><topic>Studies</topic><topic>Tissue Array Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liedtke, Cornelia</creatorcontrib><creatorcontrib>Rody, Achim</creatorcontrib><creatorcontrib>Gluz, Oleg</creatorcontrib><creatorcontrib>Baumann, Kristin</creatorcontrib><creatorcontrib>Beyer, Daniel</creatorcontrib><creatorcontrib>Kohls, Eva-Beatrice</creatorcontrib><creatorcontrib>Lausen, Kerstin</creatorcontrib><creatorcontrib>Hanker, Lars</creatorcontrib><creatorcontrib>Holtrich, Uwe</creatorcontrib><creatorcontrib>Becker, Sven</creatorcontrib><creatorcontrib>Karn, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Breast cancer research and treatment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liedtke, Cornelia</au><au>Rody, Achim</au><au>Gluz, Oleg</au><au>Baumann, Kristin</au><au>Beyer, Daniel</au><au>Kohls, Eva-Beatrice</au><au>Lausen, Kerstin</au><au>Hanker, Lars</au><au>Holtrich, Uwe</au><au>Becker, Sven</au><au>Karn, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The prognostic impact of age in different molecular subtypes of breast cancer</atitle><jtitle>Breast cancer research and treatment</jtitle><stitle>Breast Cancer Res Treat</stitle><addtitle>Breast Cancer Res Treat</addtitle><date>2015-08-01</date><risdate>2015</risdate><volume>152</volume><issue>3</issue><spage>667</spage><epage>673</epage><pages>667-673</pages><issn>0167-6806</issn><eissn>1573-7217</eissn><coden>BCTRD6</coden><abstract>Breast cancer is a heterogeneous entity composed of distinct molecular subgroups with different molecular and clinical features. We analyzed the association between molecular breast cancer subgroups, age at diagnosis, and prognosis in a compilation of publicly available gene expression datasets. Affymetrix gene expression data (U133A or U133Plus2.0 arrays) of 4467 breast cancers from 40 datasets were compiled and homogenized. Breast cancer subgroups were defined based on expression of ESR1, PR, HER2, and Ki67. Event-free survival was calculated as recurrence-free survival or distant metastasis-free survival if recurrence-free survival was not available. Young age at diagnosis is associated with higher frequency of triple negative and HER2 subtypes and lower frequency of luminal A breast cancers. The 5-year event-free survival rates of patients aged less than 40, between 40 and 50, and &gt;50 years were 54.3 ± 3.5, 68.5 ± 1.9, and 70.4 ± 1.3 %, respectively. When controlling for breast cancer subtype, we found that age &lt;40 years remained significantly associated with poor prognosis in triple negative breast cancer. The effect was modest in luminal tumors and not found in HER2 subtype. Both subtypes and age retained their significances in multivariate analysis. Association of age at diagnosis with molecular breast cancer subtype contributes to its important role as prognostic factor among patients with breast cancer. Still, within the group of triple negative breast cancer, young age &lt;40 years has a significant prognostic value which was retained in multivariate analysis.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>26195120</pmid><doi>10.1007/s10549-015-3491-3</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-6806
ispartof Breast cancer research and treatment, 2015-08, Vol.152 (3), p.667-673
issn 0167-6806
1573-7217
language eng
recordid cdi_proquest_miscellaneous_1700683731
source MEDLINE; SpringerNature Journals
subjects Adult
Age Factors
Analysis
Biomarkers, Tumor - analysis
Biomarkers, Tumor - genetics
Biomarkers, Tumor - metabolism
Breast cancer
Breast Neoplasms - drug therapy
Breast Neoplasms - metabolism
Breast Neoplasms - mortality
Breast Neoplasms - pathology
Cancer research
Cancer therapies
Disease-Free Survival
Epidemiology
Estrogen Receptor alpha - genetics
Estrogen Receptor alpha - metabolism
Female
Gene expression
Gene Expression Profiling
Humans
Ki-67 Antigen - genetics
Ki-67 Antigen - metabolism
Lymphatic Metastasis - pathology
Medicine
Medicine & Public Health
Middle Aged
Molecular biology
Multivariate Analysis
Oncology
Prognosis
Receptor, ErbB-2 - genetics
Receptor, ErbB-2 - metabolism
Receptors, Progesterone - genetics
Receptors, Progesterone - metabolism
Studies
Tissue Array Analysis
title The prognostic impact of age in different molecular subtypes of breast cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A03%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20prognostic%20impact%20of%20age%20in%20different%20molecular%20subtypes%20of%20breast%20cancer&rft.jtitle=Breast%20cancer%20research%20and%20treatment&rft.au=Liedtke,%20Cornelia&rft.date=2015-08-01&rft.volume=152&rft.issue=3&rft.spage=667&rft.epage=673&rft.pages=667-673&rft.issn=0167-6806&rft.eissn=1573-7217&rft.coden=BCTRD6&rft_id=info:doi/10.1007/s10549-015-3491-3&rft_dat=%3Cgale_proqu%3EA437878050%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1700062880&rft_id=info:pmid/26195120&rft_galeid=A437878050&rfr_iscdi=true