Improving the Validity of Quantitative Measures in Applied Linguistics Research

In empirical applied linguistics research it is essential that the key variables are operationalized in a valid and reliable way, and that the scores are treated appropriately, allowing for a proper testing of the hypotheses under investigation. The current article addresses several theoretical and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Language learning 2015-06, Vol.65 (S1), p.37-75
Hauptverfasser: Purpura, James E., Brown, James Dean, Schoonen, Rob
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 75
container_issue S1
container_start_page 37
container_title Language learning
container_volume 65
creator Purpura, James E.
Brown, James Dean
Schoonen, Rob
description In empirical applied linguistics research it is essential that the key variables are operationalized in a valid and reliable way, and that the scores are treated appropriately, allowing for a proper testing of the hypotheses under investigation. The current article addresses several theoretical and practical issues regarding the use of measurement instruments and scores. Starting from an elaborated treatment of validity and validation, it introduces a comprehensive framework for score interpretation and score use. Kane's framework serves as a rich context to raise the right questions about a measurement instruments' validity, and it provides guidance in addressing questions about validity and score use. Application of the framework is illustrated with examples from a recent second language acquisition study about the effects of recasts (Révész, 2012]). The critical generalization inference from the framework, as it applies to measuring productive L2 performance, is then examined in greater detail, discussing the different facets of these kinds of measurements and the way reliability issues are and should be dealt with. The paper concludes with a series of common measurement mistakes in applied linguistics research and recommendations to avoid these. The paper offers a brief checklist for proper quantitative data collection and for adequate data treatment in subsequent analyses.
doi_str_mv 10.1111/lang.12112
format Article
fullrecord <record><control><sourceid>proquest_eric_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1700663109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1062199</ericid><sourcerecordid>1700663109</sourcerecordid><originalsourceid>FETCH-LOGICAL-e178t-b944a6fb75a4d5002e89d4113b11eea8390f04f71bf98b00a3f1bdf36887cf9a3</originalsourceid><addsrcrecordid>eNo9kM1PwkAQxTdGExG9eDfZo5fiTrfdjyMhiBCEaPw4Ntt2FlZLwW5L5L93DcZ3mcP7zeS9IeQa2ACC7ipTrwYQA8QnpAeJkJHWcXxKeozFPFKc83Ny4f0HC4qF6JHldLNrtntXr2i7RvpmKle69kC3lj51pm5da1q3R_qIxncNeupqOtztKoclnYetzvnWFZ4-o0fTFOtLcmZN5fHqb_bJ6_34ZfQQzZeT6Wg4jxCkaqNcJ4kRNpepSco0ZEGlywSA5wCIRnHNLEushNxqlTNmuIW8tFwoJQurDe-T2-PdkP6rQ99mG-cLrMIDcNv5DCRjQnBgOqA3RxQbV2S7xm1Mc8jGM2AiBv3rR0c_VMHvf8A0n5mQXKbZ-2KSJQudTmZylin-A_XQarQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1700663109</pqid></control><display><type>article</type><title>Improving the Validity of Quantitative Measures in Applied Linguistics Research</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Purpura, James E. ; Brown, James Dean ; Schoonen, Rob</creator><creatorcontrib>Purpura, James E. ; Brown, James Dean ; Schoonen, Rob</creatorcontrib><description>In empirical applied linguistics research it is essential that the key variables are operationalized in a valid and reliable way, and that the scores are treated appropriately, allowing for a proper testing of the hypotheses under investigation. The current article addresses several theoretical and practical issues regarding the use of measurement instruments and scores. Starting from an elaborated treatment of validity and validation, it introduces a comprehensive framework for score interpretation and score use. Kane's framework serves as a rich context to raise the right questions about a measurement instruments' validity, and it provides guidance in addressing questions about validity and score use. Application of the framework is illustrated with examples from a recent second language acquisition study about the effects of recasts (Révész, 2012]). The critical generalization inference from the framework, as it applies to measuring productive L2 performance, is then examined in greater detail, discussing the different facets of these kinds of measurements and the way reliability issues are and should be dealt with. The paper concludes with a series of common measurement mistakes in applied linguistics research and recommendations to avoid these. The paper offers a brief checklist for proper quantitative data collection and for adequate data treatment in subsequent analyses.</description><identifier>ISSN: 0023-8333</identifier><identifier>EISSN: 1467-9922</identifier><identifier>DOI: 10.1111/lang.12112</identifier><identifier>CODEN: LNGLA5</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Applied Linguistics ; Check Lists ; Generalization ; Guidelines ; Language Research ; measurement ; Measurement Techniques ; quantitative ; Reliability ; Research Methodology ; Scores ; Second Language Learning ; Statistical Analysis ; validation ; Validity</subject><ispartof>Language learning, 2015-06, Vol.65 (S1), p.37-75</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1062199$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Purpura, James E.</creatorcontrib><creatorcontrib>Brown, James Dean</creatorcontrib><creatorcontrib>Schoonen, Rob</creatorcontrib><title>Improving the Validity of Quantitative Measures in Applied Linguistics Research</title><title>Language learning</title><addtitle>Language Learning</addtitle><description>In empirical applied linguistics research it is essential that the key variables are operationalized in a valid and reliable way, and that the scores are treated appropriately, allowing for a proper testing of the hypotheses under investigation. The current article addresses several theoretical and practical issues regarding the use of measurement instruments and scores. Starting from an elaborated treatment of validity and validation, it introduces a comprehensive framework for score interpretation and score use. Kane's framework serves as a rich context to raise the right questions about a measurement instruments' validity, and it provides guidance in addressing questions about validity and score use. Application of the framework is illustrated with examples from a recent second language acquisition study about the effects of recasts (Révész, 2012]). The critical generalization inference from the framework, as it applies to measuring productive L2 performance, is then examined in greater detail, discussing the different facets of these kinds of measurements and the way reliability issues are and should be dealt with. The paper concludes with a series of common measurement mistakes in applied linguistics research and recommendations to avoid these. The paper offers a brief checklist for proper quantitative data collection and for adequate data treatment in subsequent analyses.</description><subject>Applied Linguistics</subject><subject>Check Lists</subject><subject>Generalization</subject><subject>Guidelines</subject><subject>Language Research</subject><subject>measurement</subject><subject>Measurement Techniques</subject><subject>quantitative</subject><subject>Reliability</subject><subject>Research Methodology</subject><subject>Scores</subject><subject>Second Language Learning</subject><subject>Statistical Analysis</subject><subject>validation</subject><subject>Validity</subject><issn>0023-8333</issn><issn>1467-9922</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kM1PwkAQxTdGExG9eDfZo5fiTrfdjyMhiBCEaPw4Ntt2FlZLwW5L5L93DcZ3mcP7zeS9IeQa2ACC7ipTrwYQA8QnpAeJkJHWcXxKeozFPFKc83Ny4f0HC4qF6JHldLNrtntXr2i7RvpmKle69kC3lj51pm5da1q3R_qIxncNeupqOtztKoclnYetzvnWFZ4-o0fTFOtLcmZN5fHqb_bJ6_34ZfQQzZeT6Wg4jxCkaqNcJ4kRNpepSco0ZEGlywSA5wCIRnHNLEushNxqlTNmuIW8tFwoJQurDe-T2-PdkP6rQ99mG-cLrMIDcNv5DCRjQnBgOqA3RxQbV2S7xm1Mc8jGM2AiBv3rR0c_VMHvf8A0n5mQXKbZ-2KSJQudTmZylin-A_XQarQ</recordid><startdate>201506</startdate><enddate>201506</enddate><creator>Purpura, James E.</creator><creator>Brown, James Dean</creator><creator>Schoonen, Rob</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>7T9</scope></search><sort><creationdate>201506</creationdate><title>Improving the Validity of Quantitative Measures in Applied Linguistics Research</title><author>Purpura, James E. ; Brown, James Dean ; Schoonen, Rob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e178t-b944a6fb75a4d5002e89d4113b11eea8390f04f71bf98b00a3f1bdf36887cf9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applied Linguistics</topic><topic>Check Lists</topic><topic>Generalization</topic><topic>Guidelines</topic><topic>Language Research</topic><topic>measurement</topic><topic>Measurement Techniques</topic><topic>quantitative</topic><topic>Reliability</topic><topic>Research Methodology</topic><topic>Scores</topic><topic>Second Language Learning</topic><topic>Statistical Analysis</topic><topic>validation</topic><topic>Validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Purpura, James E.</creatorcontrib><creatorcontrib>Brown, James Dean</creatorcontrib><creatorcontrib>Schoonen, Rob</creatorcontrib><collection>Istex</collection><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><jtitle>Language learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Purpura, James E.</au><au>Brown, James Dean</au><au>Schoonen, Rob</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1062199</ericid><atitle>Improving the Validity of Quantitative Measures in Applied Linguistics Research</atitle><jtitle>Language learning</jtitle><addtitle>Language Learning</addtitle><date>2015-06</date><risdate>2015</risdate><volume>65</volume><issue>S1</issue><spage>37</spage><epage>75</epage><pages>37-75</pages><issn>0023-8333</issn><eissn>1467-9922</eissn><coden>LNGLA5</coden><abstract>In empirical applied linguistics research it is essential that the key variables are operationalized in a valid and reliable way, and that the scores are treated appropriately, allowing for a proper testing of the hypotheses under investigation. The current article addresses several theoretical and practical issues regarding the use of measurement instruments and scores. Starting from an elaborated treatment of validity and validation, it introduces a comprehensive framework for score interpretation and score use. Kane's framework serves as a rich context to raise the right questions about a measurement instruments' validity, and it provides guidance in addressing questions about validity and score use. Application of the framework is illustrated with examples from a recent second language acquisition study about the effects of recasts (Révész, 2012]). The critical generalization inference from the framework, as it applies to measuring productive L2 performance, is then examined in greater detail, discussing the different facets of these kinds of measurements and the way reliability issues are and should be dealt with. The paper concludes with a series of common measurement mistakes in applied linguistics research and recommendations to avoid these. The paper offers a brief checklist for proper quantitative data collection and for adequate data treatment in subsequent analyses.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1111/lang.12112</doi><tpages>39</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0023-8333
ispartof Language learning, 2015-06, Vol.65 (S1), p.37-75
issn 0023-8333
1467-9922
language eng
recordid cdi_proquest_miscellaneous_1700663109
source Wiley Online Library Journals Frontfile Complete
subjects Applied Linguistics
Check Lists
Generalization
Guidelines
Language Research
measurement
Measurement Techniques
quantitative
Reliability
Research Methodology
Scores
Second Language Learning
Statistical Analysis
validation
Validity
title Improving the Validity of Quantitative Measures in Applied Linguistics Research
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T21%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_eric_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20Validity%20of%20Quantitative%20Measures%20in%20Applied%20Linguistics%20Research&rft.jtitle=Language%20learning&rft.au=Purpura,%20James%20E.&rft.date=2015-06&rft.volume=65&rft.issue=S1&rft.spage=37&rft.epage=75&rft.pages=37-75&rft.issn=0023-8333&rft.eissn=1467-9922&rft.coden=LNGLA5&rft_id=info:doi/10.1111/lang.12112&rft_dat=%3Cproquest_eric_%3E1700663109%3C/proquest_eric_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1700663109&rft_id=info:pmid/&rft_ericid=EJ1062199&rfr_iscdi=true