Role of the cholinergic system in the regulation of neurotrophin synthesis

Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) are members of the family of neurotrophins that are highly expressed in the adult hippocampus, and to a lesser extent, in the cerebral cortex and olfactory bulb. Since neuronal expression of neurotrophins i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research 1995-12, Vol.705 (1), p.247-254
Hauptverfasser: Yu, Juan, Pizzo, Donald P., Hutton, Leslie A., Perez-Polo, J. Regino
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 254
container_issue 1
container_start_page 247
container_title Brain research
container_volume 705
creator Yu, Juan
Pizzo, Donald P.
Hutton, Leslie A.
Perez-Polo, J. Regino
description Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) are members of the family of neurotrophins that are highly expressed in the adult hippocampus, and to a lesser extent, in the cerebral cortex and olfactory bulb. Since neuronal expression of neurotrophins is controlled by some neurotransmitters and there is a topographical correlation between neurotrophin expression and cholinergic terminal distribution from the cholinergic basal forebrain (CBF) neurons in these areas, the question arises as to whether the cholinergic system can also regulate neurotrophin gene expression in the CNS. When CBF neurons were selectively and completely destroyed by intraventricular injection of 192 IgG-saporin, resulting in a cholinergic deafferentation of the hippocampus, cortex, and olfactory bulb, there were no siginificant changes in NGF, BDNF and/or NT-3 mRNA levels in these areas from 1 week to 5 months after the lesion. These results suggest that afferents from CBF neurons may not play a significant role in maintaining basal levels of neurotrophin gene expression in the adult rat brain under physiological conditions. However, potential cholinergic regulation of brain neurontrophin expression may occur under other circumstances.
doi_str_mv 10.1016/0006-8993(95)01169-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17003317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0006899395011692</els_id><sourcerecordid>17003317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-557229cd35060832925ad89911949881d9f99a15436e3515e1f7dc58988b1fe3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotX78A4U9iOhhNZNsdjcXQcRPCoL0HtLsbBvZbmqyK_Tfm21Lj56G4X1mmHkIuQB6BxTye0ppnpZS8hspbilALlN2QMZQFizNWUYPyXiPHJOTEL5jy7mkIzIqSwaFyMfk48s1mLg66RaYmIVrbIt-bk0S1qHDZWLbTeJx3je6s64d2BZ77zrvVosYh3UbiWDDGTmqdRPwfFdPyfTlefr0lk4-X9-fHiepyaDoUiEKxqSpuKA5LTmTTOgq3gggM1mWUMlaSg0i4zlyAQKhLiojypjNoEZ-Sq63a1fe_fQYOrW0wWDT6BZdHxQUw5dQRDDbgsa7EDzWauXtUvu1AqoGg2rQowY9Sgq1MahYHLvc7e9nS6z2QztlMb_a5ToY3dRet8aGPcYpLaSkEXvYYhhV_Fr0KhiLrcHKejSdqpz9_44_yr-LNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17003317</pqid></control><display><type>article</type><title>Role of the cholinergic system in the regulation of neurotrophin synthesis</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Yu, Juan ; Pizzo, Donald P. ; Hutton, Leslie A. ; Perez-Polo, J. Regino</creator><creatorcontrib>Yu, Juan ; Pizzo, Donald P. ; Hutton, Leslie A. ; Perez-Polo, J. Regino</creatorcontrib><description>Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) are members of the family of neurotrophins that are highly expressed in the adult hippocampus, and to a lesser extent, in the cerebral cortex and olfactory bulb. Since neuronal expression of neurotrophins is controlled by some neurotransmitters and there is a topographical correlation between neurotrophin expression and cholinergic terminal distribution from the cholinergic basal forebrain (CBF) neurons in these areas, the question arises as to whether the cholinergic system can also regulate neurotrophin gene expression in the CNS. When CBF neurons were selectively and completely destroyed by intraventricular injection of 192 IgG-saporin, resulting in a cholinergic deafferentation of the hippocampus, cortex, and olfactory bulb, there were no siginificant changes in NGF, BDNF and/or NT-3 mRNA levels in these areas from 1 week to 5 months after the lesion. These results suggest that afferents from CBF neurons may not play a significant role in maintaining basal levels of neurotrophin gene expression in the adult rat brain under physiological conditions. However, potential cholinergic regulation of brain neurontrophin expression may occur under other circumstances.</description><identifier>ISSN: 0006-8993</identifier><identifier>EISSN: 1872-6240</identifier><identifier>DOI: 10.1016/0006-8993(95)01169-2</identifier><identifier>PMID: 8821756</identifier><identifier>CODEN: BRREAP</identifier><language>eng</language><publisher>London: Elsevier B.V</publisher><subject>Animals ; Antibodies, Monoclonal - pharmacology ; Biochemistry and metabolism ; Biological and medical sciences ; Brain-Derived Neurotrophic Factor - biosynthesis ; Brain-Derived Neurotrophic Factor - drug effects ; Brain-Derived Neurotrophic Factor - genetics ; Central nervous system ; Cerebellum - cytology ; Cerebellum - metabolism ; Cerebral Cortex - cytology ; Cerebral Cortex - metabolism ; Cholinergic Agents - pharmacology ; Cholinergic basal forebrain neuron ; Cholinergic Fibers - physiology ; Corpus Striatum - cytology ; Corpus Striatum - metabolism ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation - drug effects ; Hippocampus - cytology ; Hippocampus - metabolism ; Immunolesion ; Immunotoxins - pharmacology ; Injections, Intraventricular ; Male ; mRNA expression ; N-Glycosyl Hydrolases ; Nerve Growth Factors - biosynthesis ; Nerve Growth Factors - drug effects ; Nerve Growth Factors - genetics ; Nerve Tissue Proteins - biosynthesis ; Nerve Tissue Proteins - drug effects ; Nerve Tissue Proteins - genetics ; Neurons - metabolism ; Neurotrophin ; Neurotrophin 3 ; Olfactory Bulb - cytology ; Olfactory Bulb - metabolism ; Proto-Oncogene Proteins - genetics ; Rats ; Rats, Sprague-Dawley ; Receptor Protein-Tyrosine Kinases - genetics ; Receptor, trkA ; Receptors, Cholinergic - metabolism ; Receptors, Nerve Growth Factor - genetics ; Ribonucleases ; Ribosome Inactivating Proteins, Type 1 ; RNA, Messenger - analysis ; Saporins ; Sensitivity and Specificity ; Septal Nuclei - cytology ; Septal Nuclei - metabolism ; Vertebrates: nervous system and sense organs</subject><ispartof>Brain research, 1995-12, Vol.705 (1), p.247-254</ispartof><rights>1995 Elsevier Science B.V. All rights reserved</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-557229cd35060832925ad89911949881d9f99a15436e3515e1f7dc58988b1fe3</citedby><cites>FETCH-LOGICAL-c417t-557229cd35060832925ad89911949881d9f99a15436e3515e1f7dc58988b1fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0006-8993(95)01169-2$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3007990$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8821756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Juan</creatorcontrib><creatorcontrib>Pizzo, Donald P.</creatorcontrib><creatorcontrib>Hutton, Leslie A.</creatorcontrib><creatorcontrib>Perez-Polo, J. Regino</creatorcontrib><title>Role of the cholinergic system in the regulation of neurotrophin synthesis</title><title>Brain research</title><addtitle>Brain Res</addtitle><description>Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) are members of the family of neurotrophins that are highly expressed in the adult hippocampus, and to a lesser extent, in the cerebral cortex and olfactory bulb. Since neuronal expression of neurotrophins is controlled by some neurotransmitters and there is a topographical correlation between neurotrophin expression and cholinergic terminal distribution from the cholinergic basal forebrain (CBF) neurons in these areas, the question arises as to whether the cholinergic system can also regulate neurotrophin gene expression in the CNS. When CBF neurons were selectively and completely destroyed by intraventricular injection of 192 IgG-saporin, resulting in a cholinergic deafferentation of the hippocampus, cortex, and olfactory bulb, there were no siginificant changes in NGF, BDNF and/or NT-3 mRNA levels in these areas from 1 week to 5 months after the lesion. These results suggest that afferents from CBF neurons may not play a significant role in maintaining basal levels of neurotrophin gene expression in the adult rat brain under physiological conditions. However, potential cholinergic regulation of brain neurontrophin expression may occur under other circumstances.</description><subject>Animals</subject><subject>Antibodies, Monoclonal - pharmacology</subject><subject>Biochemistry and metabolism</subject><subject>Biological and medical sciences</subject><subject>Brain-Derived Neurotrophic Factor - biosynthesis</subject><subject>Brain-Derived Neurotrophic Factor - drug effects</subject><subject>Brain-Derived Neurotrophic Factor - genetics</subject><subject>Central nervous system</subject><subject>Cerebellum - cytology</subject><subject>Cerebellum - metabolism</subject><subject>Cerebral Cortex - cytology</subject><subject>Cerebral Cortex - metabolism</subject><subject>Cholinergic Agents - pharmacology</subject><subject>Cholinergic basal forebrain neuron</subject><subject>Cholinergic Fibers - physiology</subject><subject>Corpus Striatum - cytology</subject><subject>Corpus Striatum - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - metabolism</subject><subject>Immunolesion</subject><subject>Immunotoxins - pharmacology</subject><subject>Injections, Intraventricular</subject><subject>Male</subject><subject>mRNA expression</subject><subject>N-Glycosyl Hydrolases</subject><subject>Nerve Growth Factors - biosynthesis</subject><subject>Nerve Growth Factors - drug effects</subject><subject>Nerve Growth Factors - genetics</subject><subject>Nerve Tissue Proteins - biosynthesis</subject><subject>Nerve Tissue Proteins - drug effects</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Neurons - metabolism</subject><subject>Neurotrophin</subject><subject>Neurotrophin 3</subject><subject>Olfactory Bulb - cytology</subject><subject>Olfactory Bulb - metabolism</subject><subject>Proto-Oncogene Proteins - genetics</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptor Protein-Tyrosine Kinases - genetics</subject><subject>Receptor, trkA</subject><subject>Receptors, Cholinergic - metabolism</subject><subject>Receptors, Nerve Growth Factor - genetics</subject><subject>Ribonucleases</subject><subject>Ribosome Inactivating Proteins, Type 1</subject><subject>RNA, Messenger - analysis</subject><subject>Saporins</subject><subject>Sensitivity and Specificity</subject><subject>Septal Nuclei - cytology</subject><subject>Septal Nuclei - metabolism</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0006-8993</issn><issn>1872-6240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEQhoMotX78A4U9iOhhNZNsdjcXQcRPCoL0HtLsbBvZbmqyK_Tfm21Lj56G4X1mmHkIuQB6BxTye0ppnpZS8hspbilALlN2QMZQFizNWUYPyXiPHJOTEL5jy7mkIzIqSwaFyMfk48s1mLg66RaYmIVrbIt-bk0S1qHDZWLbTeJx3je6s64d2BZ77zrvVosYh3UbiWDDGTmqdRPwfFdPyfTlefr0lk4-X9-fHiepyaDoUiEKxqSpuKA5LTmTTOgq3gggM1mWUMlaSg0i4zlyAQKhLiojypjNoEZ-Sq63a1fe_fQYOrW0wWDT6BZdHxQUw5dQRDDbgsa7EDzWauXtUvu1AqoGg2rQowY9Sgq1MahYHLvc7e9nS6z2QztlMb_a5ToY3dRet8aGPcYpLaSkEXvYYhhV_Fr0KhiLrcHKejSdqpz9_44_yr-LNw</recordid><startdate>19951224</startdate><enddate>19951224</enddate><creator>Yu, Juan</creator><creator>Pizzo, Donald P.</creator><creator>Hutton, Leslie A.</creator><creator>Perez-Polo, J. Regino</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>19951224</creationdate><title>Role of the cholinergic system in the regulation of neurotrophin synthesis</title><author>Yu, Juan ; Pizzo, Donald P. ; Hutton, Leslie A. ; Perez-Polo, J. Regino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-557229cd35060832925ad89911949881d9f99a15436e3515e1f7dc58988b1fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Animals</topic><topic>Antibodies, Monoclonal - pharmacology</topic><topic>Biochemistry and metabolism</topic><topic>Biological and medical sciences</topic><topic>Brain-Derived Neurotrophic Factor - biosynthesis</topic><topic>Brain-Derived Neurotrophic Factor - drug effects</topic><topic>Brain-Derived Neurotrophic Factor - genetics</topic><topic>Central nervous system</topic><topic>Cerebellum - cytology</topic><topic>Cerebellum - metabolism</topic><topic>Cerebral Cortex - cytology</topic><topic>Cerebral Cortex - metabolism</topic><topic>Cholinergic Agents - pharmacology</topic><topic>Cholinergic basal forebrain neuron</topic><topic>Cholinergic Fibers - physiology</topic><topic>Corpus Striatum - cytology</topic><topic>Corpus Striatum - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - metabolism</topic><topic>Immunolesion</topic><topic>Immunotoxins - pharmacology</topic><topic>Injections, Intraventricular</topic><topic>Male</topic><topic>mRNA expression</topic><topic>N-Glycosyl Hydrolases</topic><topic>Nerve Growth Factors - biosynthesis</topic><topic>Nerve Growth Factors - drug effects</topic><topic>Nerve Growth Factors - genetics</topic><topic>Nerve Tissue Proteins - biosynthesis</topic><topic>Nerve Tissue Proteins - drug effects</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Neurons - metabolism</topic><topic>Neurotrophin</topic><topic>Neurotrophin 3</topic><topic>Olfactory Bulb - cytology</topic><topic>Olfactory Bulb - metabolism</topic><topic>Proto-Oncogene Proteins - genetics</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptor Protein-Tyrosine Kinases - genetics</topic><topic>Receptor, trkA</topic><topic>Receptors, Cholinergic - metabolism</topic><topic>Receptors, Nerve Growth Factor - genetics</topic><topic>Ribonucleases</topic><topic>Ribosome Inactivating Proteins, Type 1</topic><topic>RNA, Messenger - analysis</topic><topic>Saporins</topic><topic>Sensitivity and Specificity</topic><topic>Septal Nuclei - cytology</topic><topic>Septal Nuclei - metabolism</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Juan</creatorcontrib><creatorcontrib>Pizzo, Donald P.</creatorcontrib><creatorcontrib>Hutton, Leslie A.</creatorcontrib><creatorcontrib>Perez-Polo, J. Regino</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Juan</au><au>Pizzo, Donald P.</au><au>Hutton, Leslie A.</au><au>Perez-Polo, J. Regino</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of the cholinergic system in the regulation of neurotrophin synthesis</atitle><jtitle>Brain research</jtitle><addtitle>Brain Res</addtitle><date>1995-12-24</date><risdate>1995</risdate><volume>705</volume><issue>1</issue><spage>247</spage><epage>254</epage><pages>247-254</pages><issn>0006-8993</issn><eissn>1872-6240</eissn><coden>BRREAP</coden><abstract>Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) are members of the family of neurotrophins that are highly expressed in the adult hippocampus, and to a lesser extent, in the cerebral cortex and olfactory bulb. Since neuronal expression of neurotrophins is controlled by some neurotransmitters and there is a topographical correlation between neurotrophin expression and cholinergic terminal distribution from the cholinergic basal forebrain (CBF) neurons in these areas, the question arises as to whether the cholinergic system can also regulate neurotrophin gene expression in the CNS. When CBF neurons were selectively and completely destroyed by intraventricular injection of 192 IgG-saporin, resulting in a cholinergic deafferentation of the hippocampus, cortex, and olfactory bulb, there were no siginificant changes in NGF, BDNF and/or NT-3 mRNA levels in these areas from 1 week to 5 months after the lesion. These results suggest that afferents from CBF neurons may not play a significant role in maintaining basal levels of neurotrophin gene expression in the adult rat brain under physiological conditions. However, potential cholinergic regulation of brain neurontrophin expression may occur under other circumstances.</abstract><cop>London</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><pmid>8821756</pmid><doi>10.1016/0006-8993(95)01169-2</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-8993
ispartof Brain research, 1995-12, Vol.705 (1), p.247-254
issn 0006-8993
1872-6240
language eng
recordid cdi_proquest_miscellaneous_17003317
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Animals
Antibodies, Monoclonal - pharmacology
Biochemistry and metabolism
Biological and medical sciences
Brain-Derived Neurotrophic Factor - biosynthesis
Brain-Derived Neurotrophic Factor - drug effects
Brain-Derived Neurotrophic Factor - genetics
Central nervous system
Cerebellum - cytology
Cerebellum - metabolism
Cerebral Cortex - cytology
Cerebral Cortex - metabolism
Cholinergic Agents - pharmacology
Cholinergic basal forebrain neuron
Cholinergic Fibers - physiology
Corpus Striatum - cytology
Corpus Striatum - metabolism
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation - drug effects
Hippocampus - cytology
Hippocampus - metabolism
Immunolesion
Immunotoxins - pharmacology
Injections, Intraventricular
Male
mRNA expression
N-Glycosyl Hydrolases
Nerve Growth Factors - biosynthesis
Nerve Growth Factors - drug effects
Nerve Growth Factors - genetics
Nerve Tissue Proteins - biosynthesis
Nerve Tissue Proteins - drug effects
Nerve Tissue Proteins - genetics
Neurons - metabolism
Neurotrophin
Neurotrophin 3
Olfactory Bulb - cytology
Olfactory Bulb - metabolism
Proto-Oncogene Proteins - genetics
Rats
Rats, Sprague-Dawley
Receptor Protein-Tyrosine Kinases - genetics
Receptor, trkA
Receptors, Cholinergic - metabolism
Receptors, Nerve Growth Factor - genetics
Ribonucleases
Ribosome Inactivating Proteins, Type 1
RNA, Messenger - analysis
Saporins
Sensitivity and Specificity
Septal Nuclei - cytology
Septal Nuclei - metabolism
Vertebrates: nervous system and sense organs
title Role of the cholinergic system in the regulation of neurotrophin synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T04%3A47%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20the%20cholinergic%20system%20in%20the%20regulation%20of%20neurotrophin%20synthesis&rft.jtitle=Brain%20research&rft.au=Yu,%20Juan&rft.date=1995-12-24&rft.volume=705&rft.issue=1&rft.spage=247&rft.epage=254&rft.pages=247-254&rft.issn=0006-8993&rft.eissn=1872-6240&rft.coden=BRREAP&rft_id=info:doi/10.1016/0006-8993(95)01169-2&rft_dat=%3Cproquest_cross%3E17003317%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17003317&rft_id=info:pmid/8821756&rft_els_id=0006899395011692&rfr_iscdi=true