Role of the cholinergic system in the regulation of neurotrophin synthesis
Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) are members of the family of neurotrophins that are highly expressed in the adult hippocampus, and to a lesser extent, in the cerebral cortex and olfactory bulb. Since neuronal expression of neurotrophins i...
Gespeichert in:
Veröffentlicht in: | Brain research 1995-12, Vol.705 (1), p.247-254 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 254 |
---|---|
container_issue | 1 |
container_start_page | 247 |
container_title | Brain research |
container_volume | 705 |
creator | Yu, Juan Pizzo, Donald P. Hutton, Leslie A. Perez-Polo, J. Regino |
description | Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) are members of the family of neurotrophins that are highly expressed in the adult hippocampus, and to a lesser extent, in the cerebral cortex and olfactory bulb. Since neuronal expression of neurotrophins is controlled by some neurotransmitters and there is a topographical correlation between neurotrophin expression and cholinergic terminal distribution from the cholinergic basal forebrain (CBF) neurons in these areas, the question arises as to whether the cholinergic system can also regulate neurotrophin gene expression in the CNS. When CBF neurons were selectively and completely destroyed by intraventricular injection of 192 IgG-saporin, resulting in a cholinergic deafferentation of the hippocampus, cortex, and olfactory bulb, there were no siginificant changes in NGF, BDNF and/or NT-3 mRNA levels in these areas from 1 week to 5 months after the lesion. These results suggest that afferents from CBF neurons may not play a significant role in maintaining basal levels of neurotrophin gene expression in the adult rat brain under physiological conditions. However, potential cholinergic regulation of brain neurontrophin expression may occur under other circumstances. |
doi_str_mv | 10.1016/0006-8993(95)01169-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17003317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0006899395011692</els_id><sourcerecordid>17003317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-557229cd35060832925ad89911949881d9f99a15436e3515e1f7dc58988b1fe3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotX78A4U9iOhhNZNsdjcXQcRPCoL0HtLsbBvZbmqyK_Tfm21Lj56G4X1mmHkIuQB6BxTye0ppnpZS8hspbilALlN2QMZQFizNWUYPyXiPHJOTEL5jy7mkIzIqSwaFyMfk48s1mLg66RaYmIVrbIt-bk0S1qHDZWLbTeJx3je6s64d2BZ77zrvVosYh3UbiWDDGTmqdRPwfFdPyfTlefr0lk4-X9-fHiepyaDoUiEKxqSpuKA5LTmTTOgq3gggM1mWUMlaSg0i4zlyAQKhLiojypjNoEZ-Sq63a1fe_fQYOrW0wWDT6BZdHxQUw5dQRDDbgsa7EDzWauXtUvu1AqoGg2rQowY9Sgq1MahYHLvc7e9nS6z2QztlMb_a5ToY3dRet8aGPcYpLaSkEXvYYhhV_Fr0KhiLrcHKejSdqpz9_44_yr-LNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17003317</pqid></control><display><type>article</type><title>Role of the cholinergic system in the regulation of neurotrophin synthesis</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Yu, Juan ; Pizzo, Donald P. ; Hutton, Leslie A. ; Perez-Polo, J. Regino</creator><creatorcontrib>Yu, Juan ; Pizzo, Donald P. ; Hutton, Leslie A. ; Perez-Polo, J. Regino</creatorcontrib><description>Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) are members of the family of neurotrophins that are highly expressed in the adult hippocampus, and to a lesser extent, in the cerebral cortex and olfactory bulb. Since neuronal expression of neurotrophins is controlled by some neurotransmitters and there is a topographical correlation between neurotrophin expression and cholinergic terminal distribution from the cholinergic basal forebrain (CBF) neurons in these areas, the question arises as to whether the cholinergic system can also regulate neurotrophin gene expression in the CNS. When CBF neurons were selectively and completely destroyed by intraventricular injection of 192 IgG-saporin, resulting in a cholinergic deafferentation of the hippocampus, cortex, and olfactory bulb, there were no siginificant changes in NGF, BDNF and/or NT-3 mRNA levels in these areas from 1 week to 5 months after the lesion. These results suggest that afferents from CBF neurons may not play a significant role in maintaining basal levels of neurotrophin gene expression in the adult rat brain under physiological conditions. However, potential cholinergic regulation of brain neurontrophin expression may occur under other circumstances.</description><identifier>ISSN: 0006-8993</identifier><identifier>EISSN: 1872-6240</identifier><identifier>DOI: 10.1016/0006-8993(95)01169-2</identifier><identifier>PMID: 8821756</identifier><identifier>CODEN: BRREAP</identifier><language>eng</language><publisher>London: Elsevier B.V</publisher><subject>Animals ; Antibodies, Monoclonal - pharmacology ; Biochemistry and metabolism ; Biological and medical sciences ; Brain-Derived Neurotrophic Factor - biosynthesis ; Brain-Derived Neurotrophic Factor - drug effects ; Brain-Derived Neurotrophic Factor - genetics ; Central nervous system ; Cerebellum - cytology ; Cerebellum - metabolism ; Cerebral Cortex - cytology ; Cerebral Cortex - metabolism ; Cholinergic Agents - pharmacology ; Cholinergic basal forebrain neuron ; Cholinergic Fibers - physiology ; Corpus Striatum - cytology ; Corpus Striatum - metabolism ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation - drug effects ; Hippocampus - cytology ; Hippocampus - metabolism ; Immunolesion ; Immunotoxins - pharmacology ; Injections, Intraventricular ; Male ; mRNA expression ; N-Glycosyl Hydrolases ; Nerve Growth Factors - biosynthesis ; Nerve Growth Factors - drug effects ; Nerve Growth Factors - genetics ; Nerve Tissue Proteins - biosynthesis ; Nerve Tissue Proteins - drug effects ; Nerve Tissue Proteins - genetics ; Neurons - metabolism ; Neurotrophin ; Neurotrophin 3 ; Olfactory Bulb - cytology ; Olfactory Bulb - metabolism ; Proto-Oncogene Proteins - genetics ; Rats ; Rats, Sprague-Dawley ; Receptor Protein-Tyrosine Kinases - genetics ; Receptor, trkA ; Receptors, Cholinergic - metabolism ; Receptors, Nerve Growth Factor - genetics ; Ribonucleases ; Ribosome Inactivating Proteins, Type 1 ; RNA, Messenger - analysis ; Saporins ; Sensitivity and Specificity ; Septal Nuclei - cytology ; Septal Nuclei - metabolism ; Vertebrates: nervous system and sense organs</subject><ispartof>Brain research, 1995-12, Vol.705 (1), p.247-254</ispartof><rights>1995 Elsevier Science B.V. All rights reserved</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-557229cd35060832925ad89911949881d9f99a15436e3515e1f7dc58988b1fe3</citedby><cites>FETCH-LOGICAL-c417t-557229cd35060832925ad89911949881d9f99a15436e3515e1f7dc58988b1fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0006-8993(95)01169-2$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3007990$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8821756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Juan</creatorcontrib><creatorcontrib>Pizzo, Donald P.</creatorcontrib><creatorcontrib>Hutton, Leslie A.</creatorcontrib><creatorcontrib>Perez-Polo, J. Regino</creatorcontrib><title>Role of the cholinergic system in the regulation of neurotrophin synthesis</title><title>Brain research</title><addtitle>Brain Res</addtitle><description>Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) are members of the family of neurotrophins that are highly expressed in the adult hippocampus, and to a lesser extent, in the cerebral cortex and olfactory bulb. Since neuronal expression of neurotrophins is controlled by some neurotransmitters and there is a topographical correlation between neurotrophin expression and cholinergic terminal distribution from the cholinergic basal forebrain (CBF) neurons in these areas, the question arises as to whether the cholinergic system can also regulate neurotrophin gene expression in the CNS. When CBF neurons were selectively and completely destroyed by intraventricular injection of 192 IgG-saporin, resulting in a cholinergic deafferentation of the hippocampus, cortex, and olfactory bulb, there were no siginificant changes in NGF, BDNF and/or NT-3 mRNA levels in these areas from 1 week to 5 months after the lesion. These results suggest that afferents from CBF neurons may not play a significant role in maintaining basal levels of neurotrophin gene expression in the adult rat brain under physiological conditions. However, potential cholinergic regulation of brain neurontrophin expression may occur under other circumstances.</description><subject>Animals</subject><subject>Antibodies, Monoclonal - pharmacology</subject><subject>Biochemistry and metabolism</subject><subject>Biological and medical sciences</subject><subject>Brain-Derived Neurotrophic Factor - biosynthesis</subject><subject>Brain-Derived Neurotrophic Factor - drug effects</subject><subject>Brain-Derived Neurotrophic Factor - genetics</subject><subject>Central nervous system</subject><subject>Cerebellum - cytology</subject><subject>Cerebellum - metabolism</subject><subject>Cerebral Cortex - cytology</subject><subject>Cerebral Cortex - metabolism</subject><subject>Cholinergic Agents - pharmacology</subject><subject>Cholinergic basal forebrain neuron</subject><subject>Cholinergic Fibers - physiology</subject><subject>Corpus Striatum - cytology</subject><subject>Corpus Striatum - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - metabolism</subject><subject>Immunolesion</subject><subject>Immunotoxins - pharmacology</subject><subject>Injections, Intraventricular</subject><subject>Male</subject><subject>mRNA expression</subject><subject>N-Glycosyl Hydrolases</subject><subject>Nerve Growth Factors - biosynthesis</subject><subject>Nerve Growth Factors - drug effects</subject><subject>Nerve Growth Factors - genetics</subject><subject>Nerve Tissue Proteins - biosynthesis</subject><subject>Nerve Tissue Proteins - drug effects</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Neurons - metabolism</subject><subject>Neurotrophin</subject><subject>Neurotrophin 3</subject><subject>Olfactory Bulb - cytology</subject><subject>Olfactory Bulb - metabolism</subject><subject>Proto-Oncogene Proteins - genetics</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptor Protein-Tyrosine Kinases - genetics</subject><subject>Receptor, trkA</subject><subject>Receptors, Cholinergic - metabolism</subject><subject>Receptors, Nerve Growth Factor - genetics</subject><subject>Ribonucleases</subject><subject>Ribosome Inactivating Proteins, Type 1</subject><subject>RNA, Messenger - analysis</subject><subject>Saporins</subject><subject>Sensitivity and Specificity</subject><subject>Septal Nuclei - cytology</subject><subject>Septal Nuclei - metabolism</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0006-8993</issn><issn>1872-6240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEQhoMotX78A4U9iOhhNZNsdjcXQcRPCoL0HtLsbBvZbmqyK_Tfm21Lj56G4X1mmHkIuQB6BxTye0ppnpZS8hspbilALlN2QMZQFizNWUYPyXiPHJOTEL5jy7mkIzIqSwaFyMfk48s1mLg66RaYmIVrbIt-bk0S1qHDZWLbTeJx3je6s64d2BZ77zrvVosYh3UbiWDDGTmqdRPwfFdPyfTlefr0lk4-X9-fHiepyaDoUiEKxqSpuKA5LTmTTOgq3gggM1mWUMlaSg0i4zlyAQKhLiojypjNoEZ-Sq63a1fe_fQYOrW0wWDT6BZdHxQUw5dQRDDbgsa7EDzWauXtUvu1AqoGg2rQowY9Sgq1MahYHLvc7e9nS6z2QztlMb_a5ToY3dRet8aGPcYpLaSkEXvYYhhV_Fr0KhiLrcHKejSdqpz9_44_yr-LNw</recordid><startdate>19951224</startdate><enddate>19951224</enddate><creator>Yu, Juan</creator><creator>Pizzo, Donald P.</creator><creator>Hutton, Leslie A.</creator><creator>Perez-Polo, J. Regino</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>19951224</creationdate><title>Role of the cholinergic system in the regulation of neurotrophin synthesis</title><author>Yu, Juan ; Pizzo, Donald P. ; Hutton, Leslie A. ; Perez-Polo, J. Regino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-557229cd35060832925ad89911949881d9f99a15436e3515e1f7dc58988b1fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Animals</topic><topic>Antibodies, Monoclonal - pharmacology</topic><topic>Biochemistry and metabolism</topic><topic>Biological and medical sciences</topic><topic>Brain-Derived Neurotrophic Factor - biosynthesis</topic><topic>Brain-Derived Neurotrophic Factor - drug effects</topic><topic>Brain-Derived Neurotrophic Factor - genetics</topic><topic>Central nervous system</topic><topic>Cerebellum - cytology</topic><topic>Cerebellum - metabolism</topic><topic>Cerebral Cortex - cytology</topic><topic>Cerebral Cortex - metabolism</topic><topic>Cholinergic Agents - pharmacology</topic><topic>Cholinergic basal forebrain neuron</topic><topic>Cholinergic Fibers - physiology</topic><topic>Corpus Striatum - cytology</topic><topic>Corpus Striatum - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - metabolism</topic><topic>Immunolesion</topic><topic>Immunotoxins - pharmacology</topic><topic>Injections, Intraventricular</topic><topic>Male</topic><topic>mRNA expression</topic><topic>N-Glycosyl Hydrolases</topic><topic>Nerve Growth Factors - biosynthesis</topic><topic>Nerve Growth Factors - drug effects</topic><topic>Nerve Growth Factors - genetics</topic><topic>Nerve Tissue Proteins - biosynthesis</topic><topic>Nerve Tissue Proteins - drug effects</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Neurons - metabolism</topic><topic>Neurotrophin</topic><topic>Neurotrophin 3</topic><topic>Olfactory Bulb - cytology</topic><topic>Olfactory Bulb - metabolism</topic><topic>Proto-Oncogene Proteins - genetics</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptor Protein-Tyrosine Kinases - genetics</topic><topic>Receptor, trkA</topic><topic>Receptors, Cholinergic - metabolism</topic><topic>Receptors, Nerve Growth Factor - genetics</topic><topic>Ribonucleases</topic><topic>Ribosome Inactivating Proteins, Type 1</topic><topic>RNA, Messenger - analysis</topic><topic>Saporins</topic><topic>Sensitivity and Specificity</topic><topic>Septal Nuclei - cytology</topic><topic>Septal Nuclei - metabolism</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Juan</creatorcontrib><creatorcontrib>Pizzo, Donald P.</creatorcontrib><creatorcontrib>Hutton, Leslie A.</creatorcontrib><creatorcontrib>Perez-Polo, J. Regino</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Juan</au><au>Pizzo, Donald P.</au><au>Hutton, Leslie A.</au><au>Perez-Polo, J. Regino</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of the cholinergic system in the regulation of neurotrophin synthesis</atitle><jtitle>Brain research</jtitle><addtitle>Brain Res</addtitle><date>1995-12-24</date><risdate>1995</risdate><volume>705</volume><issue>1</issue><spage>247</spage><epage>254</epage><pages>247-254</pages><issn>0006-8993</issn><eissn>1872-6240</eissn><coden>BRREAP</coden><abstract>Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) are members of the family of neurotrophins that are highly expressed in the adult hippocampus, and to a lesser extent, in the cerebral cortex and olfactory bulb. Since neuronal expression of neurotrophins is controlled by some neurotransmitters and there is a topographical correlation between neurotrophin expression and cholinergic terminal distribution from the cholinergic basal forebrain (CBF) neurons in these areas, the question arises as to whether the cholinergic system can also regulate neurotrophin gene expression in the CNS. When CBF neurons were selectively and completely destroyed by intraventricular injection of 192 IgG-saporin, resulting in a cholinergic deafferentation of the hippocampus, cortex, and olfactory bulb, there were no siginificant changes in NGF, BDNF and/or NT-3 mRNA levels in these areas from 1 week to 5 months after the lesion. These results suggest that afferents from CBF neurons may not play a significant role in maintaining basal levels of neurotrophin gene expression in the adult rat brain under physiological conditions. However, potential cholinergic regulation of brain neurontrophin expression may occur under other circumstances.</abstract><cop>London</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><pmid>8821756</pmid><doi>10.1016/0006-8993(95)01169-2</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-8993 |
ispartof | Brain research, 1995-12, Vol.705 (1), p.247-254 |
issn | 0006-8993 1872-6240 |
language | eng |
recordid | cdi_proquest_miscellaneous_17003317 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Animals Antibodies, Monoclonal - pharmacology Biochemistry and metabolism Biological and medical sciences Brain-Derived Neurotrophic Factor - biosynthesis Brain-Derived Neurotrophic Factor - drug effects Brain-Derived Neurotrophic Factor - genetics Central nervous system Cerebellum - cytology Cerebellum - metabolism Cerebral Cortex - cytology Cerebral Cortex - metabolism Cholinergic Agents - pharmacology Cholinergic basal forebrain neuron Cholinergic Fibers - physiology Corpus Striatum - cytology Corpus Striatum - metabolism Fundamental and applied biological sciences. Psychology Gene Expression Regulation - drug effects Hippocampus - cytology Hippocampus - metabolism Immunolesion Immunotoxins - pharmacology Injections, Intraventricular Male mRNA expression N-Glycosyl Hydrolases Nerve Growth Factors - biosynthesis Nerve Growth Factors - drug effects Nerve Growth Factors - genetics Nerve Tissue Proteins - biosynthesis Nerve Tissue Proteins - drug effects Nerve Tissue Proteins - genetics Neurons - metabolism Neurotrophin Neurotrophin 3 Olfactory Bulb - cytology Olfactory Bulb - metabolism Proto-Oncogene Proteins - genetics Rats Rats, Sprague-Dawley Receptor Protein-Tyrosine Kinases - genetics Receptor, trkA Receptors, Cholinergic - metabolism Receptors, Nerve Growth Factor - genetics Ribonucleases Ribosome Inactivating Proteins, Type 1 RNA, Messenger - analysis Saporins Sensitivity and Specificity Septal Nuclei - cytology Septal Nuclei - metabolism Vertebrates: nervous system and sense organs |
title | Role of the cholinergic system in the regulation of neurotrophin synthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T04%3A47%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20the%20cholinergic%20system%20in%20the%20regulation%20of%20neurotrophin%20synthesis&rft.jtitle=Brain%20research&rft.au=Yu,%20Juan&rft.date=1995-12-24&rft.volume=705&rft.issue=1&rft.spage=247&rft.epage=254&rft.pages=247-254&rft.issn=0006-8993&rft.eissn=1872-6240&rft.coden=BRREAP&rft_id=info:doi/10.1016/0006-8993(95)01169-2&rft_dat=%3Cproquest_cross%3E17003317%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17003317&rft_id=info:pmid/8821756&rft_els_id=0006899395011692&rfr_iscdi=true |