Frequency-domain photothermoacoustic and ultrasonic imaging of blood and opto-thermal effects of plasmonic nanoparticle concentrations
We describe the use of combined ultrasonic imaging (USI) and photoacoustic radar imaging (PARI) with linear chirp laser modulation to provide visualization of blood with and without the use of gold nanoparticles. A blood vessel simulating sample (S1) containing pure sheep blood was shown to be an op...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical optics 2015-07, Vol.20 (7), p.076009-076009 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 076009 |
---|---|
container_issue | 7 |
container_start_page | 076009 |
container_title | Journal of biomedical optics |
container_volume | 20 |
creator | Khosroshahi, Mohammad E Mandelis, Andreas Lashkari, Bahman |
description | We describe the use of combined ultrasonic imaging (USI) and photoacoustic radar imaging (PARI) with linear chirp laser modulation to provide visualization of blood with and without the use of gold nanoparticles. A blood vessel simulating sample (S1) containing pure sheep blood was shown to be an optically weak absorbing medium which satisfies thermal but not acoustic confinement. On the contrary, the blood-gold combinations (S2) using 10% and S3 (20%) Au concentrations behaved as optically strongly absorbing media. A heating efficiency of 0.54 to 8.60×103 K cm2 J−1 was determined for Au NPs. The optimal optical power modulation spectral density was determined to be in the range of 0.5 to 0.8 MHz and 0.3 to 1.0 MHz for USI and PARI, respectively. USI produced a better structural image while PARI produced a better functional image of the simulated blood vessel in the order of S2>S3>S1 due to enhanced signal-to-noise ratio. Two-dimensional images of the simulated blood vessel were also obtained. In summary, the PA signal does not increase linearly with Au NP concentration and the change of blood osmolarity due to temperature increase can cause thermo-hemolysis of red blood cells which in turn degrades the PA signal and thus the blood imaging quality. On the other hand, USI produced the best structural image, S4, due to the strong US reflection response from Au NPs and its insensitivity to the presence of blood. |
doi_str_mv | 10.1117/1.JBO.20.7.076009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1699493188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1744687392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-ff9914b9d920f0df243af02de40dab42392050bfa5813bdf1ae2b7d81277a7d93</originalsourceid><addsrcrecordid>eNqFkctu1TAQhi0EoqXwAGxQlmwSPE6OL8tSOFxUqSzK2nJ8aVMltrGdRXkAnhv3pHQBCFa2Z77_l2d-hF4C7gCAvYHu89uLjuCOdZhRjMUjdAw7iltCODyud8z7tqeUH6FnOd9gjDkV9Ck6IhQEH0Acox_7ZL-t1uvb1oRFTb6J16GEcm3TEpQOay6TbpQ3zTqXpHLw9Tkt6mryV01wzTiHYA79EEtoDzo1N9Y5q0u-I-Ks8nKQeeVDVKkazrbRwWvrq2WZgs_P0ROn5mxf3J8n6Ov-_eXZx_b84sOns9PzVg-iL61zQsAwCiMIdtg4MvTKYWLsgI0aB9LX-g6PTu049KNxoCwZmeFAGFPMiP4Evd58Ywp17FzkMmVt51l5W2eVwIaBclZ9_o9SIeqngPOKwobqFHJO1smY6o7SrQQs75KSIGtSkmDJ5JZU1by6t1_HxZoHxa9oKtBtQI6TlTdhTb5u5p-Ol38TPGDfp_i75lA73RL58m7_Rzsa1_8ECpG8LA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1699493188</pqid></control><display><type>article</type><title>Frequency-domain photothermoacoustic and ultrasonic imaging of blood and opto-thermal effects of plasmonic nanoparticle concentrations</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Khosroshahi, Mohammad E ; Mandelis, Andreas ; Lashkari, Bahman</creator><creatorcontrib>Khosroshahi, Mohammad E ; Mandelis, Andreas ; Lashkari, Bahman</creatorcontrib><description>We describe the use of combined ultrasonic imaging (USI) and photoacoustic radar imaging (PARI) with linear chirp laser modulation to provide visualization of blood with and without the use of gold nanoparticles. A blood vessel simulating sample (S1) containing pure sheep blood was shown to be an optically weak absorbing medium which satisfies thermal but not acoustic confinement. On the contrary, the blood-gold combinations (S2) using 10% and S3 (20%) Au concentrations behaved as optically strongly absorbing media. A heating efficiency of 0.54 to 8.60×103 K cm2 J−1 was determined for Au NPs. The optimal optical power modulation spectral density was determined to be in the range of 0.5 to 0.8 MHz and 0.3 to 1.0 MHz for USI and PARI, respectively. USI produced a better structural image while PARI produced a better functional image of the simulated blood vessel in the order of S2>S3>S1 due to enhanced signal-to-noise ratio. Two-dimensional images of the simulated blood vessel were also obtained. In summary, the PA signal does not increase linearly with Au NP concentration and the change of blood osmolarity due to temperature increase can cause thermo-hemolysis of red blood cells which in turn degrades the PA signal and thus the blood imaging quality. On the other hand, USI produced the best structural image, S4, due to the strong US reflection response from Au NPs and its insensitivity to the presence of blood.</description><identifier>ISSN: 1083-3668</identifier><identifier>EISSN: 1560-2281</identifier><identifier>DOI: 10.1117/1.JBO.20.7.076009</identifier><identifier>PMID: 26198419</identifier><language>eng</language><publisher>United States: Society of Photo-Optical Instrumentation Engineers</publisher><subject>Animals ; Blood ; Blood Physiological Phenomena ; Blood vessels ; Gold ; Gold - chemistry ; Image Processing, Computer-Assisted ; Imaging ; Metal Nanoparticles - chemistry ; Models, Biological ; Modulation ; Paris ; Photoacoustic Techniques - methods ; Sheep ; Signal Processing, Computer-Assisted ; Simulation ; Thermography - methods ; Ultrasonic testing ; Ultrasonography - methods</subject><ispartof>Journal of biomedical optics, 2015-07, Vol.20 (7), p.076009-076009</ispartof><rights>2015 Society of Photo-Optical Instrumentation Engineers (SPIE)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-ff9914b9d920f0df243af02de40dab42392050bfa5813bdf1ae2b7d81277a7d93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26198419$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khosroshahi, Mohammad E</creatorcontrib><creatorcontrib>Mandelis, Andreas</creatorcontrib><creatorcontrib>Lashkari, Bahman</creatorcontrib><title>Frequency-domain photothermoacoustic and ultrasonic imaging of blood and opto-thermal effects of plasmonic nanoparticle concentrations</title><title>Journal of biomedical optics</title><addtitle>J. Biomed. Opt</addtitle><description>We describe the use of combined ultrasonic imaging (USI) and photoacoustic radar imaging (PARI) with linear chirp laser modulation to provide visualization of blood with and without the use of gold nanoparticles. A blood vessel simulating sample (S1) containing pure sheep blood was shown to be an optically weak absorbing medium which satisfies thermal but not acoustic confinement. On the contrary, the blood-gold combinations (S2) using 10% and S3 (20%) Au concentrations behaved as optically strongly absorbing media. A heating efficiency of 0.54 to 8.60×103 K cm2 J−1 was determined for Au NPs. The optimal optical power modulation spectral density was determined to be in the range of 0.5 to 0.8 MHz and 0.3 to 1.0 MHz for USI and PARI, respectively. USI produced a better structural image while PARI produced a better functional image of the simulated blood vessel in the order of S2>S3>S1 due to enhanced signal-to-noise ratio. Two-dimensional images of the simulated blood vessel were also obtained. In summary, the PA signal does not increase linearly with Au NP concentration and the change of blood osmolarity due to temperature increase can cause thermo-hemolysis of red blood cells which in turn degrades the PA signal and thus the blood imaging quality. On the other hand, USI produced the best structural image, S4, due to the strong US reflection response from Au NPs and its insensitivity to the presence of blood.</description><subject>Animals</subject><subject>Blood</subject><subject>Blood Physiological Phenomena</subject><subject>Blood vessels</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>Image Processing, Computer-Assisted</subject><subject>Imaging</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Models, Biological</subject><subject>Modulation</subject><subject>Paris</subject><subject>Photoacoustic Techniques - methods</subject><subject>Sheep</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Simulation</subject><subject>Thermography - methods</subject><subject>Ultrasonic testing</subject><subject>Ultrasonography - methods</subject><issn>1083-3668</issn><issn>1560-2281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctu1TAQhi0EoqXwAGxQlmwSPE6OL8tSOFxUqSzK2nJ8aVMltrGdRXkAnhv3pHQBCFa2Z77_l2d-hF4C7gCAvYHu89uLjuCOdZhRjMUjdAw7iltCODyud8z7tqeUH6FnOd9gjDkV9Ck6IhQEH0Acox_7ZL-t1uvb1oRFTb6J16GEcm3TEpQOay6TbpQ3zTqXpHLw9Tkt6mryV01wzTiHYA79EEtoDzo1N9Y5q0u-I-Ks8nKQeeVDVKkazrbRwWvrq2WZgs_P0ROn5mxf3J8n6Ov-_eXZx_b84sOns9PzVg-iL61zQsAwCiMIdtg4MvTKYWLsgI0aB9LX-g6PTu049KNxoCwZmeFAGFPMiP4Evd58Ywp17FzkMmVt51l5W2eVwIaBclZ9_o9SIeqngPOKwobqFHJO1smY6o7SrQQs75KSIGtSkmDJ5JZU1by6t1_HxZoHxa9oKtBtQI6TlTdhTb5u5p-Ol38TPGDfp_i75lA73RL58m7_Rzsa1_8ECpG8LA</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Khosroshahi, Mohammad E</creator><creator>Mandelis, Andreas</creator><creator>Lashkari, Bahman</creator><general>Society of Photo-Optical Instrumentation Engineers</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20150701</creationdate><title>Frequency-domain photothermoacoustic and ultrasonic imaging of blood and opto-thermal effects of plasmonic nanoparticle concentrations</title><author>Khosroshahi, Mohammad E ; Mandelis, Andreas ; Lashkari, Bahman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-ff9914b9d920f0df243af02de40dab42392050bfa5813bdf1ae2b7d81277a7d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Blood</topic><topic>Blood Physiological Phenomena</topic><topic>Blood vessels</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>Image Processing, Computer-Assisted</topic><topic>Imaging</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Models, Biological</topic><topic>Modulation</topic><topic>Paris</topic><topic>Photoacoustic Techniques - methods</topic><topic>Sheep</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Simulation</topic><topic>Thermography - methods</topic><topic>Ultrasonic testing</topic><topic>Ultrasonography - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khosroshahi, Mohammad E</creatorcontrib><creatorcontrib>Mandelis, Andreas</creatorcontrib><creatorcontrib>Lashkari, Bahman</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of biomedical optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khosroshahi, Mohammad E</au><au>Mandelis, Andreas</au><au>Lashkari, Bahman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency-domain photothermoacoustic and ultrasonic imaging of blood and opto-thermal effects of plasmonic nanoparticle concentrations</atitle><jtitle>Journal of biomedical optics</jtitle><addtitle>J. Biomed. Opt</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>20</volume><issue>7</issue><spage>076009</spage><epage>076009</epage><pages>076009-076009</pages><issn>1083-3668</issn><eissn>1560-2281</eissn><abstract>We describe the use of combined ultrasonic imaging (USI) and photoacoustic radar imaging (PARI) with linear chirp laser modulation to provide visualization of blood with and without the use of gold nanoparticles. A blood vessel simulating sample (S1) containing pure sheep blood was shown to be an optically weak absorbing medium which satisfies thermal but not acoustic confinement. On the contrary, the blood-gold combinations (S2) using 10% and S3 (20%) Au concentrations behaved as optically strongly absorbing media. A heating efficiency of 0.54 to 8.60×103 K cm2 J−1 was determined for Au NPs. The optimal optical power modulation spectral density was determined to be in the range of 0.5 to 0.8 MHz and 0.3 to 1.0 MHz for USI and PARI, respectively. USI produced a better structural image while PARI produced a better functional image of the simulated blood vessel in the order of S2>S3>S1 due to enhanced signal-to-noise ratio. Two-dimensional images of the simulated blood vessel were also obtained. In summary, the PA signal does not increase linearly with Au NP concentration and the change of blood osmolarity due to temperature increase can cause thermo-hemolysis of red blood cells which in turn degrades the PA signal and thus the blood imaging quality. On the other hand, USI produced the best structural image, S4, due to the strong US reflection response from Au NPs and its insensitivity to the presence of blood.</abstract><cop>United States</cop><pub>Society of Photo-Optical Instrumentation Engineers</pub><pmid>26198419</pmid><doi>10.1117/1.JBO.20.7.076009</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1083-3668 |
ispartof | Journal of biomedical optics, 2015-07, Vol.20 (7), p.076009-076009 |
issn | 1083-3668 1560-2281 |
language | eng |
recordid | cdi_proquest_miscellaneous_1699493188 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Blood Blood Physiological Phenomena Blood vessels Gold Gold - chemistry Image Processing, Computer-Assisted Imaging Metal Nanoparticles - chemistry Models, Biological Modulation Paris Photoacoustic Techniques - methods Sheep Signal Processing, Computer-Assisted Simulation Thermography - methods Ultrasonic testing Ultrasonography - methods |
title | Frequency-domain photothermoacoustic and ultrasonic imaging of blood and opto-thermal effects of plasmonic nanoparticle concentrations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A58%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency-domain%20photothermoacoustic%20and%20ultrasonic%20imaging%20of%20blood%20and%20opto-thermal%20effects%20of%20plasmonic%20nanoparticle%20concentrations&rft.jtitle=Journal%20of%20biomedical%20optics&rft.au=Khosroshahi,%20Mohammad%20E&rft.date=2015-07-01&rft.volume=20&rft.issue=7&rft.spage=076009&rft.epage=076009&rft.pages=076009-076009&rft.issn=1083-3668&rft.eissn=1560-2281&rft_id=info:doi/10.1117/1.JBO.20.7.076009&rft_dat=%3Cproquest_cross%3E1744687392%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1699493188&rft_id=info:pmid/26198419&rfr_iscdi=true |