Frequency-domain photothermoacoustic and ultrasonic imaging of blood and opto-thermal effects of plasmonic nanoparticle concentrations

We describe the use of combined ultrasonic imaging (USI) and photoacoustic radar imaging (PARI) with linear chirp laser modulation to provide visualization of blood with and without the use of gold nanoparticles. A blood vessel simulating sample (S1) containing pure sheep blood was shown to be an op...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical optics 2015-07, Vol.20 (7), p.076009-076009
Hauptverfasser: Khosroshahi, Mohammad E, Mandelis, Andreas, Lashkari, Bahman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 076009
container_issue 7
container_start_page 076009
container_title Journal of biomedical optics
container_volume 20
creator Khosroshahi, Mohammad E
Mandelis, Andreas
Lashkari, Bahman
description We describe the use of combined ultrasonic imaging (USI) and photoacoustic radar imaging (PARI) with linear chirp laser modulation to provide visualization of blood with and without the use of gold nanoparticles. A blood vessel simulating sample (S1) containing pure sheep blood was shown to be an optically weak absorbing medium which satisfies thermal but not acoustic confinement. On the contrary, the blood-gold combinations (S2) using 10% and S3 (20%) Au concentrations behaved as optically strongly absorbing media. A heating efficiency of 0.54 to 8.60×103  K cm2 J−1 was determined for Au NPs. The optimal optical power modulation spectral density was determined to be in the range of 0.5 to 0.8 MHz and 0.3 to 1.0 MHz for USI and PARI, respectively. USI produced a better structural image while PARI produced a better functional image of the simulated blood vessel in the order of S2>S3>S1 due to enhanced signal-to-noise ratio. Two-dimensional images of the simulated blood vessel were also obtained. In summary, the PA signal does not increase linearly with Au NP concentration and the change of blood osmolarity due to temperature increase can cause thermo-hemolysis of red blood cells which in turn degrades the PA signal and thus the blood imaging quality. On the other hand, USI produced the best structural image, S4, due to the strong US reflection response from Au NPs and its insensitivity to the presence of blood.
doi_str_mv 10.1117/1.JBO.20.7.076009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1699493188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1744687392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-ff9914b9d920f0df243af02de40dab42392050bfa5813bdf1ae2b7d81277a7d93</originalsourceid><addsrcrecordid>eNqFkctu1TAQhi0EoqXwAGxQlmwSPE6OL8tSOFxUqSzK2nJ8aVMltrGdRXkAnhv3pHQBCFa2Z77_l2d-hF4C7gCAvYHu89uLjuCOdZhRjMUjdAw7iltCODyud8z7tqeUH6FnOd9gjDkV9Ck6IhQEH0Acox_7ZL-t1uvb1oRFTb6J16GEcm3TEpQOay6TbpQ3zTqXpHLw9Tkt6mryV01wzTiHYA79EEtoDzo1N9Y5q0u-I-Ks8nKQeeVDVKkazrbRwWvrq2WZgs_P0ROn5mxf3J8n6Ov-_eXZx_b84sOns9PzVg-iL61zQsAwCiMIdtg4MvTKYWLsgI0aB9LX-g6PTu049KNxoCwZmeFAGFPMiP4Evd58Ywp17FzkMmVt51l5W2eVwIaBclZ9_o9SIeqngPOKwobqFHJO1smY6o7SrQQs75KSIGtSkmDJ5JZU1by6t1_HxZoHxa9oKtBtQI6TlTdhTb5u5p-Ol38TPGDfp_i75lA73RL58m7_Rzsa1_8ECpG8LA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1699493188</pqid></control><display><type>article</type><title>Frequency-domain photothermoacoustic and ultrasonic imaging of blood and opto-thermal effects of plasmonic nanoparticle concentrations</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Khosroshahi, Mohammad E ; Mandelis, Andreas ; Lashkari, Bahman</creator><creatorcontrib>Khosroshahi, Mohammad E ; Mandelis, Andreas ; Lashkari, Bahman</creatorcontrib><description>We describe the use of combined ultrasonic imaging (USI) and photoacoustic radar imaging (PARI) with linear chirp laser modulation to provide visualization of blood with and without the use of gold nanoparticles. A blood vessel simulating sample (S1) containing pure sheep blood was shown to be an optically weak absorbing medium which satisfies thermal but not acoustic confinement. On the contrary, the blood-gold combinations (S2) using 10% and S3 (20%) Au concentrations behaved as optically strongly absorbing media. A heating efficiency of 0.54 to 8.60×103  K cm2 J−1 was determined for Au NPs. The optimal optical power modulation spectral density was determined to be in the range of 0.5 to 0.8 MHz and 0.3 to 1.0 MHz for USI and PARI, respectively. USI produced a better structural image while PARI produced a better functional image of the simulated blood vessel in the order of S2&gt;S3&gt;S1 due to enhanced signal-to-noise ratio. Two-dimensional images of the simulated blood vessel were also obtained. In summary, the PA signal does not increase linearly with Au NP concentration and the change of blood osmolarity due to temperature increase can cause thermo-hemolysis of red blood cells which in turn degrades the PA signal and thus the blood imaging quality. On the other hand, USI produced the best structural image, S4, due to the strong US reflection response from Au NPs and its insensitivity to the presence of blood.</description><identifier>ISSN: 1083-3668</identifier><identifier>EISSN: 1560-2281</identifier><identifier>DOI: 10.1117/1.JBO.20.7.076009</identifier><identifier>PMID: 26198419</identifier><language>eng</language><publisher>United States: Society of Photo-Optical Instrumentation Engineers</publisher><subject>Animals ; Blood ; Blood Physiological Phenomena ; Blood vessels ; Gold ; Gold - chemistry ; Image Processing, Computer-Assisted ; Imaging ; Metal Nanoparticles - chemistry ; Models, Biological ; Modulation ; Paris ; Photoacoustic Techniques - methods ; Sheep ; Signal Processing, Computer-Assisted ; Simulation ; Thermography - methods ; Ultrasonic testing ; Ultrasonography - methods</subject><ispartof>Journal of biomedical optics, 2015-07, Vol.20 (7), p.076009-076009</ispartof><rights>2015 Society of Photo-Optical Instrumentation Engineers (SPIE)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-ff9914b9d920f0df243af02de40dab42392050bfa5813bdf1ae2b7d81277a7d93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26198419$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khosroshahi, Mohammad E</creatorcontrib><creatorcontrib>Mandelis, Andreas</creatorcontrib><creatorcontrib>Lashkari, Bahman</creatorcontrib><title>Frequency-domain photothermoacoustic and ultrasonic imaging of blood and opto-thermal effects of plasmonic nanoparticle concentrations</title><title>Journal of biomedical optics</title><addtitle>J. Biomed. Opt</addtitle><description>We describe the use of combined ultrasonic imaging (USI) and photoacoustic radar imaging (PARI) with linear chirp laser modulation to provide visualization of blood with and without the use of gold nanoparticles. A blood vessel simulating sample (S1) containing pure sheep blood was shown to be an optically weak absorbing medium which satisfies thermal but not acoustic confinement. On the contrary, the blood-gold combinations (S2) using 10% and S3 (20%) Au concentrations behaved as optically strongly absorbing media. A heating efficiency of 0.54 to 8.60×103  K cm2 J−1 was determined for Au NPs. The optimal optical power modulation spectral density was determined to be in the range of 0.5 to 0.8 MHz and 0.3 to 1.0 MHz for USI and PARI, respectively. USI produced a better structural image while PARI produced a better functional image of the simulated blood vessel in the order of S2&gt;S3&gt;S1 due to enhanced signal-to-noise ratio. Two-dimensional images of the simulated blood vessel were also obtained. In summary, the PA signal does not increase linearly with Au NP concentration and the change of blood osmolarity due to temperature increase can cause thermo-hemolysis of red blood cells which in turn degrades the PA signal and thus the blood imaging quality. On the other hand, USI produced the best structural image, S4, due to the strong US reflection response from Au NPs and its insensitivity to the presence of blood.</description><subject>Animals</subject><subject>Blood</subject><subject>Blood Physiological Phenomena</subject><subject>Blood vessels</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>Image Processing, Computer-Assisted</subject><subject>Imaging</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Models, Biological</subject><subject>Modulation</subject><subject>Paris</subject><subject>Photoacoustic Techniques - methods</subject><subject>Sheep</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Simulation</subject><subject>Thermography - methods</subject><subject>Ultrasonic testing</subject><subject>Ultrasonography - methods</subject><issn>1083-3668</issn><issn>1560-2281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctu1TAQhi0EoqXwAGxQlmwSPE6OL8tSOFxUqSzK2nJ8aVMltrGdRXkAnhv3pHQBCFa2Z77_l2d-hF4C7gCAvYHu89uLjuCOdZhRjMUjdAw7iltCODyud8z7tqeUH6FnOd9gjDkV9Ck6IhQEH0Acox_7ZL-t1uvb1oRFTb6J16GEcm3TEpQOay6TbpQ3zTqXpHLw9Tkt6mryV01wzTiHYA79EEtoDzo1N9Y5q0u-I-Ks8nKQeeVDVKkazrbRwWvrq2WZgs_P0ROn5mxf3J8n6Ov-_eXZx_b84sOns9PzVg-iL61zQsAwCiMIdtg4MvTKYWLsgI0aB9LX-g6PTu049KNxoCwZmeFAGFPMiP4Evd58Ywp17FzkMmVt51l5W2eVwIaBclZ9_o9SIeqngPOKwobqFHJO1smY6o7SrQQs75KSIGtSkmDJ5JZU1by6t1_HxZoHxa9oKtBtQI6TlTdhTb5u5p-Ol38TPGDfp_i75lA73RL58m7_Rzsa1_8ECpG8LA</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Khosroshahi, Mohammad E</creator><creator>Mandelis, Andreas</creator><creator>Lashkari, Bahman</creator><general>Society of Photo-Optical Instrumentation Engineers</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20150701</creationdate><title>Frequency-domain photothermoacoustic and ultrasonic imaging of blood and opto-thermal effects of plasmonic nanoparticle concentrations</title><author>Khosroshahi, Mohammad E ; Mandelis, Andreas ; Lashkari, Bahman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-ff9914b9d920f0df243af02de40dab42392050bfa5813bdf1ae2b7d81277a7d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Blood</topic><topic>Blood Physiological Phenomena</topic><topic>Blood vessels</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>Image Processing, Computer-Assisted</topic><topic>Imaging</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Models, Biological</topic><topic>Modulation</topic><topic>Paris</topic><topic>Photoacoustic Techniques - methods</topic><topic>Sheep</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Simulation</topic><topic>Thermography - methods</topic><topic>Ultrasonic testing</topic><topic>Ultrasonography - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khosroshahi, Mohammad E</creatorcontrib><creatorcontrib>Mandelis, Andreas</creatorcontrib><creatorcontrib>Lashkari, Bahman</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of biomedical optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khosroshahi, Mohammad E</au><au>Mandelis, Andreas</au><au>Lashkari, Bahman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency-domain photothermoacoustic and ultrasonic imaging of blood and opto-thermal effects of plasmonic nanoparticle concentrations</atitle><jtitle>Journal of biomedical optics</jtitle><addtitle>J. Biomed. Opt</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>20</volume><issue>7</issue><spage>076009</spage><epage>076009</epage><pages>076009-076009</pages><issn>1083-3668</issn><eissn>1560-2281</eissn><abstract>We describe the use of combined ultrasonic imaging (USI) and photoacoustic radar imaging (PARI) with linear chirp laser modulation to provide visualization of blood with and without the use of gold nanoparticles. A blood vessel simulating sample (S1) containing pure sheep blood was shown to be an optically weak absorbing medium which satisfies thermal but not acoustic confinement. On the contrary, the blood-gold combinations (S2) using 10% and S3 (20%) Au concentrations behaved as optically strongly absorbing media. A heating efficiency of 0.54 to 8.60×103  K cm2 J−1 was determined for Au NPs. The optimal optical power modulation spectral density was determined to be in the range of 0.5 to 0.8 MHz and 0.3 to 1.0 MHz for USI and PARI, respectively. USI produced a better structural image while PARI produced a better functional image of the simulated blood vessel in the order of S2&gt;S3&gt;S1 due to enhanced signal-to-noise ratio. Two-dimensional images of the simulated blood vessel were also obtained. In summary, the PA signal does not increase linearly with Au NP concentration and the change of blood osmolarity due to temperature increase can cause thermo-hemolysis of red blood cells which in turn degrades the PA signal and thus the blood imaging quality. On the other hand, USI produced the best structural image, S4, due to the strong US reflection response from Au NPs and its insensitivity to the presence of blood.</abstract><cop>United States</cop><pub>Society of Photo-Optical Instrumentation Engineers</pub><pmid>26198419</pmid><doi>10.1117/1.JBO.20.7.076009</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1083-3668
ispartof Journal of biomedical optics, 2015-07, Vol.20 (7), p.076009-076009
issn 1083-3668
1560-2281
language eng
recordid cdi_proquest_miscellaneous_1699493188
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Blood
Blood Physiological Phenomena
Blood vessels
Gold
Gold - chemistry
Image Processing, Computer-Assisted
Imaging
Metal Nanoparticles - chemistry
Models, Biological
Modulation
Paris
Photoacoustic Techniques - methods
Sheep
Signal Processing, Computer-Assisted
Simulation
Thermography - methods
Ultrasonic testing
Ultrasonography - methods
title Frequency-domain photothermoacoustic and ultrasonic imaging of blood and opto-thermal effects of plasmonic nanoparticle concentrations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A58%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency-domain%20photothermoacoustic%20and%20ultrasonic%20imaging%20of%20blood%20and%20opto-thermal%20effects%20of%20plasmonic%20nanoparticle%20concentrations&rft.jtitle=Journal%20of%20biomedical%20optics&rft.au=Khosroshahi,%20Mohammad%20E&rft.date=2015-07-01&rft.volume=20&rft.issue=7&rft.spage=076009&rft.epage=076009&rft.pages=076009-076009&rft.issn=1083-3668&rft.eissn=1560-2281&rft_id=info:doi/10.1117/1.JBO.20.7.076009&rft_dat=%3Cproquest_cross%3E1744687392%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1699493188&rft_id=info:pmid/26198419&rfr_iscdi=true