Temporal characteristics of ecological risk assessment indicators in coal-mining city with the application of LVQ method

Because the ability of selected indicators in assessing ecological risk at different temporal scales is not the same, it is necessary to clear the definite comparability of such indicators at temporal scale to explore a new method for dynamic assessing the ecological risk. In this case, five mining...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ying yong sheng tai xue bao 2015-03, Vol.26 (3), p.867-874
Hauptverfasser: Peng, Jian, Tao, Jing-Xian, Liu, Yan-xu
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 874
container_issue 3
container_start_page 867
container_title Ying yong sheng tai xue bao
container_volume 26
creator Peng, Jian
Tao, Jing-Xian
Liu, Yan-xu
description Because the ability of selected indicators in assessing ecological risk at different temporal scales is not the same, it is necessary to clear the definite comparability of such indicators at temporal scale to explore a new method for dynamic assessing the ecological risk. In this case, five mining cities in Liaoning Province were selected as the study area, with the application of learning vector quantization (LVQ) neural network, the significance of the indicators for the ecological risk assessment was quantitatively analyzed to clarify their characteristics at temporal scale. The expression with two-dimension (long-term and short-term) of temporal scale was put forward as a new method to assess the ecological risk for mining cities. The results showed that the amount of industrial SO2 removed per output value, the amount of industrial dust removed per output value, coverage rate of urban green space, precipitation, coordination degree among subsystems, percentage of mining practitioners, and current year i
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1699491145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1699491145</sourcerecordid><originalsourceid>FETCH-LOGICAL-p196t-48219b978e79c4ffeb13fb9e1a378f21a2c3041fcb6f9cbf99557dc7efa0fa5c3</originalsourceid><addsrcrecordid>eNo1kE1LAzEYhHNQbKn9C5Kjl4V87G6aoxS_oCBC9bok2TfdYLJZkxTtv3fFepph5mEOc4GWlBBaSc7ZAq1zdpqQthEtI-QKLVjLKCWCLtH3HsIUk_LYDCopUyC5XJzJOFoMJvp4cGZu5_QDq5wh5wBjwW7s57zElGeLTVS-Cm504wEbV074y5UBlwGwmib_C7o4_i7u3l9xgDLE_hpdWuUzrM-6Qm8P9_vtU7V7eXze3u2qicq2VPWGUaml2ICQprYWNOVWS6CKi41lVDHDSU2t0a2VRlspm0b0RoBVxKrG8BW6_dudUvw8Qi5dcNmA92qEeMwdbaWsJaV1M6M3Z_SoA_TdlFxQ6dT9v8V_ANVWaQI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1699491145</pqid></control><display><type>article</type><title>Temporal characteristics of ecological risk assessment indicators in coal-mining city with the application of LVQ method</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Peng, Jian ; Tao, Jing-Xian ; Liu, Yan-xu</creator><creatorcontrib>Peng, Jian ; Tao, Jing-Xian ; Liu, Yan-xu</creatorcontrib><description>Because the ability of selected indicators in assessing ecological risk at different temporal scales is not the same, it is necessary to clear the definite comparability of such indicators at temporal scale to explore a new method for dynamic assessing the ecological risk. In this case, five mining cities in Liaoning Province were selected as the study area, with the application of learning vector quantization (LVQ) neural network, the significance of the indicators for the ecological risk assessment was quantitatively analyzed to clarify their characteristics at temporal scale. The expression with two-dimension (long-term and short-term) of temporal scale was put forward as a new method to assess the ecological risk for mining cities. The results showed that the amount of industrial SO2 removed per output value, the amount of industrial dust removed per output value, coverage rate of urban green space, precipitation, coordination degree among subsystems, percentage of mining practitioners, and current year i</description><identifier>ISSN: 1001-9332</identifier><identifier>PMID: 26211071</identifier><language>chi</language><publisher>China</publisher><subject>China ; Cities ; Coal Mining ; Dust ; Ecology ; Neural Networks (Computer) ; Risk Assessment - methods ; Time Factors</subject><ispartof>Ying yong sheng tai xue bao, 2015-03, Vol.26 (3), p.867-874</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26211071$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Jian</creatorcontrib><creatorcontrib>Tao, Jing-Xian</creatorcontrib><creatorcontrib>Liu, Yan-xu</creatorcontrib><title>Temporal characteristics of ecological risk assessment indicators in coal-mining city with the application of LVQ method</title><title>Ying yong sheng tai xue bao</title><addtitle>Ying Yong Sheng Tai Xue Bao</addtitle><description>Because the ability of selected indicators in assessing ecological risk at different temporal scales is not the same, it is necessary to clear the definite comparability of such indicators at temporal scale to explore a new method for dynamic assessing the ecological risk. In this case, five mining cities in Liaoning Province were selected as the study area, with the application of learning vector quantization (LVQ) neural network, the significance of the indicators for the ecological risk assessment was quantitatively analyzed to clarify their characteristics at temporal scale. The expression with two-dimension (long-term and short-term) of temporal scale was put forward as a new method to assess the ecological risk for mining cities. The results showed that the amount of industrial SO2 removed per output value, the amount of industrial dust removed per output value, coverage rate of urban green space, precipitation, coordination degree among subsystems, percentage of mining practitioners, and current year i</description><subject>China</subject><subject>Cities</subject><subject>Coal Mining</subject><subject>Dust</subject><subject>Ecology</subject><subject>Neural Networks (Computer)</subject><subject>Risk Assessment - methods</subject><subject>Time Factors</subject><issn>1001-9332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kE1LAzEYhHNQbKn9C5Kjl4V87G6aoxS_oCBC9bok2TfdYLJZkxTtv3fFepph5mEOc4GWlBBaSc7ZAq1zdpqQthEtI-QKLVjLKCWCLtH3HsIUk_LYDCopUyC5XJzJOFoMJvp4cGZu5_QDq5wh5wBjwW7s57zElGeLTVS-Cm504wEbV074y5UBlwGwmib_C7o4_i7u3l9xgDLE_hpdWuUzrM-6Qm8P9_vtU7V7eXze3u2qicq2VPWGUaml2ICQprYWNOVWS6CKi41lVDHDSU2t0a2VRlspm0b0RoBVxKrG8BW6_dudUvw8Qi5dcNmA92qEeMwdbaWsJaV1M6M3Z_SoA_TdlFxQ6dT9v8V_ANVWaQI</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Peng, Jian</creator><creator>Tao, Jing-Xian</creator><creator>Liu, Yan-xu</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>201503</creationdate><title>Temporal characteristics of ecological risk assessment indicators in coal-mining city with the application of LVQ method</title><author>Peng, Jian ; Tao, Jing-Xian ; Liu, Yan-xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p196t-48219b978e79c4ffeb13fb9e1a378f21a2c3041fcb6f9cbf99557dc7efa0fa5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2015</creationdate><topic>China</topic><topic>Cities</topic><topic>Coal Mining</topic><topic>Dust</topic><topic>Ecology</topic><topic>Neural Networks (Computer)</topic><topic>Risk Assessment - methods</topic><topic>Time Factors</topic><toplevel>online_resources</toplevel><creatorcontrib>Peng, Jian</creatorcontrib><creatorcontrib>Tao, Jing-Xian</creatorcontrib><creatorcontrib>Liu, Yan-xu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Ying yong sheng tai xue bao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Jian</au><au>Tao, Jing-Xian</au><au>Liu, Yan-xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temporal characteristics of ecological risk assessment indicators in coal-mining city with the application of LVQ method</atitle><jtitle>Ying yong sheng tai xue bao</jtitle><addtitle>Ying Yong Sheng Tai Xue Bao</addtitle><date>2015-03</date><risdate>2015</risdate><volume>26</volume><issue>3</issue><spage>867</spage><epage>874</epage><pages>867-874</pages><issn>1001-9332</issn><abstract>Because the ability of selected indicators in assessing ecological risk at different temporal scales is not the same, it is necessary to clear the definite comparability of such indicators at temporal scale to explore a new method for dynamic assessing the ecological risk. In this case, five mining cities in Liaoning Province were selected as the study area, with the application of learning vector quantization (LVQ) neural network, the significance of the indicators for the ecological risk assessment was quantitatively analyzed to clarify their characteristics at temporal scale. The expression with two-dimension (long-term and short-term) of temporal scale was put forward as a new method to assess the ecological risk for mining cities. The results showed that the amount of industrial SO2 removed per output value, the amount of industrial dust removed per output value, coverage rate of urban green space, precipitation, coordination degree among subsystems, percentage of mining practitioners, and current year i</abstract><cop>China</cop><pmid>26211071</pmid><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1001-9332
ispartof Ying yong sheng tai xue bao, 2015-03, Vol.26 (3), p.867-874
issn 1001-9332
language chi
recordid cdi_proquest_miscellaneous_1699491145
source MEDLINE; EZB-FREE-00999 freely available EZB journals
subjects China
Cities
Coal Mining
Dust
Ecology
Neural Networks (Computer)
Risk Assessment - methods
Time Factors
title Temporal characteristics of ecological risk assessment indicators in coal-mining city with the application of LVQ method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A35%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temporal%20characteristics%20of%20ecological%20risk%20assessment%20indicators%20in%20coal-mining%20city%20with%20the%20application%20of%20LVQ%20method&rft.jtitle=Ying%20yong%20sheng%20tai%20xue%20bao&rft.au=Peng,%20Jian&rft.date=2015-03&rft.volume=26&rft.issue=3&rft.spage=867&rft.epage=874&rft.pages=867-874&rft.issn=1001-9332&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E1699491145%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1699491145&rft_id=info:pmid/26211071&rfr_iscdi=true