VAR for VaR: Measuring tail dependence using multivariate regression quantiles
This paper proposes methods for estimation and inference in multivariate, multi-quantile models. The theory can simultaneously accommodate models with multiple random variables, multiple confidence levels, and multiple lags of the associated quantiles. The proposed framework can be conveniently thou...
Gespeichert in:
Veröffentlicht in: | Journal of econometrics 2015-07, Vol.187 (1), p.169-188 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 188 |
---|---|
container_issue | 1 |
container_start_page | 169 |
container_title | Journal of econometrics |
container_volume | 187 |
creator | White, Halbert Kim, Tae-Hwan Manganelli, Simone |
description | This paper proposes methods for estimation and inference in multivariate, multi-quantile models. The theory can simultaneously accommodate models with multiple random variables, multiple confidence levels, and multiple lags of the associated quantiles. The proposed framework can be conveniently thought of as a vector autoregressive (VAR) extension to quantile models. We estimate a simple version of the model using market equity returns data to analyze spillovers in the values at risk (VaR) between a market index and financial institutions. We construct impulse-response functions for the quantiles of a sample of 230 financial institutions around the world and study how financial institution-specific and system-wide shocks are absorbed by the system. We show how the long-run risk of the largest and most leveraged financial institutions is very sensitive to market wide shocks in situations of financial distress, suggesting that our methodology can prove a valuable addition to the traditional toolkit of policy makers and supervisors. |
doi_str_mv | 10.1016/j.jeconom.2015.02.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1698959501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407615000287</els_id><sourcerecordid>3701008031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c547t-c9f2d42c730a4793467238c75b6459603b7aad4caf9a980c56caabba458937e43</originalsourceid><addsrcrecordid>eNqFkMtK9EAQhRtRcLw8ghBw828SK-lb2o2IeAMvIOq2qelUpEMmPXYngm9vhnH1b1wVFN85VH2MnZRQlFCqs67oyIUhrIoKSllAVQCIHbYoa13lqjZyly2Ag8gFaLXPDlLqAECKmi_Y0_vlS9aGmL3jy3n2SJim6IePbETfZw2taWhocJRNabNdTf3ovzB6HCmL9BEpJR-G7HPCYfQ9pSO212Kf6Ph3HrK3m-vXq7v84fn2_uryIXdS6DF3pq0aUTnNAYU2XChd8dppuVRCGgV8qREb4bA1aGpwUjnE5RKFrA3XJPgh-7ftXcfwOVEa7conR32PA4Up2VKZ-W8joZzR0__QLkxxmK-bqVoIKZTkMyW3lIshpUitXUe_wvhtS7Aby7azv5btxrKFys6W59zFNkfzt1-eok3Ob4w1PpIbbRP8Hw0_HUiH1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1684454653</pqid></control><display><type>article</type><title>VAR for VaR: Measuring tail dependence using multivariate regression quantiles</title><source>Access via ScienceDirect (Elsevier)</source><creator>White, Halbert ; Kim, Tae-Hwan ; Manganelli, Simone</creator><creatorcontrib>White, Halbert ; Kim, Tae-Hwan ; Manganelli, Simone</creatorcontrib><description>This paper proposes methods for estimation and inference in multivariate, multi-quantile models. The theory can simultaneously accommodate models with multiple random variables, multiple confidence levels, and multiple lags of the associated quantiles. The proposed framework can be conveniently thought of as a vector autoregressive (VAR) extension to quantile models. We estimate a simple version of the model using market equity returns data to analyze spillovers in the values at risk (VaR) between a market index and financial institutions. We construct impulse-response functions for the quantiles of a sample of 230 financial institutions around the world and study how financial institution-specific and system-wide shocks are absorbed by the system. We show how the long-run risk of the largest and most leveraged financial institutions is very sensitive to market wide shocks in situations of financial distress, suggesting that our methodology can prove a valuable addition to the traditional toolkit of policy makers and supervisors.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2015.02.004</identifier><identifier>CODEN: JECMB6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>CAViaR ; Codependence ; Economic models ; Economic theory ; Estimating techniques ; Financial institutions ; Financial services ; Methodology ; Quantile impulse-responses ; Random variables ; Regression analysis ; Risk assessment ; Risk management ; Spillover ; Studies ; Value at risk</subject><ispartof>Journal of econometrics, 2015-07, Vol.187 (1), p.169-188</ispartof><rights>2015 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jul 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c547t-c9f2d42c730a4793467238c75b6459603b7aad4caf9a980c56caabba458937e43</citedby><cites>FETCH-LOGICAL-c547t-c9f2d42c730a4793467238c75b6459603b7aad4caf9a980c56caabba458937e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jeconom.2015.02.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids></links><search><creatorcontrib>White, Halbert</creatorcontrib><creatorcontrib>Kim, Tae-Hwan</creatorcontrib><creatorcontrib>Manganelli, Simone</creatorcontrib><title>VAR for VaR: Measuring tail dependence using multivariate regression quantiles</title><title>Journal of econometrics</title><description>This paper proposes methods for estimation and inference in multivariate, multi-quantile models. The theory can simultaneously accommodate models with multiple random variables, multiple confidence levels, and multiple lags of the associated quantiles. The proposed framework can be conveniently thought of as a vector autoregressive (VAR) extension to quantile models. We estimate a simple version of the model using market equity returns data to analyze spillovers in the values at risk (VaR) between a market index and financial institutions. We construct impulse-response functions for the quantiles of a sample of 230 financial institutions around the world and study how financial institution-specific and system-wide shocks are absorbed by the system. We show how the long-run risk of the largest and most leveraged financial institutions is very sensitive to market wide shocks in situations of financial distress, suggesting that our methodology can prove a valuable addition to the traditional toolkit of policy makers and supervisors.</description><subject>CAViaR</subject><subject>Codependence</subject><subject>Economic models</subject><subject>Economic theory</subject><subject>Estimating techniques</subject><subject>Financial institutions</subject><subject>Financial services</subject><subject>Methodology</subject><subject>Quantile impulse-responses</subject><subject>Random variables</subject><subject>Regression analysis</subject><subject>Risk assessment</subject><subject>Risk management</subject><subject>Spillover</subject><subject>Studies</subject><subject>Value at risk</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkMtK9EAQhRtRcLw8ghBw828SK-lb2o2IeAMvIOq2qelUpEMmPXYngm9vhnH1b1wVFN85VH2MnZRQlFCqs67oyIUhrIoKSllAVQCIHbYoa13lqjZyly2Ag8gFaLXPDlLqAECKmi_Y0_vlS9aGmL3jy3n2SJim6IePbETfZw2taWhocJRNabNdTf3ovzB6HCmL9BEpJR-G7HPCYfQ9pSO212Kf6Ph3HrK3m-vXq7v84fn2_uryIXdS6DF3pq0aUTnNAYU2XChd8dppuVRCGgV8qREb4bA1aGpwUjnE5RKFrA3XJPgh-7ftXcfwOVEa7conR32PA4Up2VKZ-W8joZzR0__QLkxxmK-bqVoIKZTkMyW3lIshpUitXUe_wvhtS7Aby7azv5btxrKFys6W59zFNkfzt1-eok3Ob4w1PpIbbRP8Hw0_HUiH1g</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>White, Halbert</creator><creator>Kim, Tae-Hwan</creator><creator>Manganelli, Simone</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20150701</creationdate><title>VAR for VaR: Measuring tail dependence using multivariate regression quantiles</title><author>White, Halbert ; Kim, Tae-Hwan ; Manganelli, Simone</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c547t-c9f2d42c730a4793467238c75b6459603b7aad4caf9a980c56caabba458937e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>CAViaR</topic><topic>Codependence</topic><topic>Economic models</topic><topic>Economic theory</topic><topic>Estimating techniques</topic><topic>Financial institutions</topic><topic>Financial services</topic><topic>Methodology</topic><topic>Quantile impulse-responses</topic><topic>Random variables</topic><topic>Regression analysis</topic><topic>Risk assessment</topic><topic>Risk management</topic><topic>Spillover</topic><topic>Studies</topic><topic>Value at risk</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>White, Halbert</creatorcontrib><creatorcontrib>Kim, Tae-Hwan</creatorcontrib><creatorcontrib>Manganelli, Simone</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>White, Halbert</au><au>Kim, Tae-Hwan</au><au>Manganelli, Simone</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VAR for VaR: Measuring tail dependence using multivariate regression quantiles</atitle><jtitle>Journal of econometrics</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>187</volume><issue>1</issue><spage>169</spage><epage>188</epage><pages>169-188</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><coden>JECMB6</coden><abstract>This paper proposes methods for estimation and inference in multivariate, multi-quantile models. The theory can simultaneously accommodate models with multiple random variables, multiple confidence levels, and multiple lags of the associated quantiles. The proposed framework can be conveniently thought of as a vector autoregressive (VAR) extension to quantile models. We estimate a simple version of the model using market equity returns data to analyze spillovers in the values at risk (VaR) between a market index and financial institutions. We construct impulse-response functions for the quantiles of a sample of 230 financial institutions around the world and study how financial institution-specific and system-wide shocks are absorbed by the system. We show how the long-run risk of the largest and most leveraged financial institutions is very sensitive to market wide shocks in situations of financial distress, suggesting that our methodology can prove a valuable addition to the traditional toolkit of policy makers and supervisors.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2015.02.004</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-4076 |
ispartof | Journal of econometrics, 2015-07, Vol.187 (1), p.169-188 |
issn | 0304-4076 1872-6895 |
language | eng |
recordid | cdi_proquest_miscellaneous_1698959501 |
source | Access via ScienceDirect (Elsevier) |
subjects | CAViaR Codependence Economic models Economic theory Estimating techniques Financial institutions Financial services Methodology Quantile impulse-responses Random variables Regression analysis Risk assessment Risk management Spillover Studies Value at risk |
title | VAR for VaR: Measuring tail dependence using multivariate regression quantiles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T02%3A02%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VAR%20for%20VaR:%20Measuring%20tail%20dependence%20using%20multivariate%20regression%20quantiles&rft.jtitle=Journal%20of%20econometrics&rft.au=White,%20Halbert&rft.date=2015-07-01&rft.volume=187&rft.issue=1&rft.spage=169&rft.epage=188&rft.pages=169-188&rft.issn=0304-4076&rft.eissn=1872-6895&rft.coden=JECMB6&rft_id=info:doi/10.1016/j.jeconom.2015.02.004&rft_dat=%3Cproquest_cross%3E3701008031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1684454653&rft_id=info:pmid/&rft_els_id=S0304407615000287&rfr_iscdi=true |