VAR for VaR: Measuring tail dependence using multivariate regression quantiles

This paper proposes methods for estimation and inference in multivariate, multi-quantile models. The theory can simultaneously accommodate models with multiple random variables, multiple confidence levels, and multiple lags of the associated quantiles. The proposed framework can be conveniently thou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2015-07, Vol.187 (1), p.169-188
Hauptverfasser: White, Halbert, Kim, Tae-Hwan, Manganelli, Simone
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 188
container_issue 1
container_start_page 169
container_title Journal of econometrics
container_volume 187
creator White, Halbert
Kim, Tae-Hwan
Manganelli, Simone
description This paper proposes methods for estimation and inference in multivariate, multi-quantile models. The theory can simultaneously accommodate models with multiple random variables, multiple confidence levels, and multiple lags of the associated quantiles. The proposed framework can be conveniently thought of as a vector autoregressive (VAR) extension to quantile models. We estimate a simple version of the model using market equity returns data to analyze spillovers in the values at risk (VaR) between a market index and financial institutions. We construct impulse-response functions for the quantiles of a sample of 230 financial institutions around the world and study how financial institution-specific and system-wide shocks are absorbed by the system. We show how the long-run risk of the largest and most leveraged financial institutions is very sensitive to market wide shocks in situations of financial distress, suggesting that our methodology can prove a valuable addition to the traditional toolkit of policy makers and supervisors.
doi_str_mv 10.1016/j.jeconom.2015.02.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1698959501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407615000287</els_id><sourcerecordid>3701008031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c547t-c9f2d42c730a4793467238c75b6459603b7aad4caf9a980c56caabba458937e43</originalsourceid><addsrcrecordid>eNqFkMtK9EAQhRtRcLw8ghBw828SK-lb2o2IeAMvIOq2qelUpEMmPXYngm9vhnH1b1wVFN85VH2MnZRQlFCqs67oyIUhrIoKSllAVQCIHbYoa13lqjZyly2Ag8gFaLXPDlLqAECKmi_Y0_vlS9aGmL3jy3n2SJim6IePbETfZw2taWhocJRNabNdTf3ovzB6HCmL9BEpJR-G7HPCYfQ9pSO212Kf6Ph3HrK3m-vXq7v84fn2_uryIXdS6DF3pq0aUTnNAYU2XChd8dppuVRCGgV8qREb4bA1aGpwUjnE5RKFrA3XJPgh-7ftXcfwOVEa7conR32PA4Up2VKZ-W8joZzR0__QLkxxmK-bqVoIKZTkMyW3lIshpUitXUe_wvhtS7Aby7azv5btxrKFys6W59zFNkfzt1-eok3Ob4w1PpIbbRP8Hw0_HUiH1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1684454653</pqid></control><display><type>article</type><title>VAR for VaR: Measuring tail dependence using multivariate regression quantiles</title><source>Access via ScienceDirect (Elsevier)</source><creator>White, Halbert ; Kim, Tae-Hwan ; Manganelli, Simone</creator><creatorcontrib>White, Halbert ; Kim, Tae-Hwan ; Manganelli, Simone</creatorcontrib><description>This paper proposes methods for estimation and inference in multivariate, multi-quantile models. The theory can simultaneously accommodate models with multiple random variables, multiple confidence levels, and multiple lags of the associated quantiles. The proposed framework can be conveniently thought of as a vector autoregressive (VAR) extension to quantile models. We estimate a simple version of the model using market equity returns data to analyze spillovers in the values at risk (VaR) between a market index and financial institutions. We construct impulse-response functions for the quantiles of a sample of 230 financial institutions around the world and study how financial institution-specific and system-wide shocks are absorbed by the system. We show how the long-run risk of the largest and most leveraged financial institutions is very sensitive to market wide shocks in situations of financial distress, suggesting that our methodology can prove a valuable addition to the traditional toolkit of policy makers and supervisors.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2015.02.004</identifier><identifier>CODEN: JECMB6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>CAViaR ; Codependence ; Economic models ; Economic theory ; Estimating techniques ; Financial institutions ; Financial services ; Methodology ; Quantile impulse-responses ; Random variables ; Regression analysis ; Risk assessment ; Risk management ; Spillover ; Studies ; Value at risk</subject><ispartof>Journal of econometrics, 2015-07, Vol.187 (1), p.169-188</ispartof><rights>2015 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jul 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c547t-c9f2d42c730a4793467238c75b6459603b7aad4caf9a980c56caabba458937e43</citedby><cites>FETCH-LOGICAL-c547t-c9f2d42c730a4793467238c75b6459603b7aad4caf9a980c56caabba458937e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jeconom.2015.02.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids></links><search><creatorcontrib>White, Halbert</creatorcontrib><creatorcontrib>Kim, Tae-Hwan</creatorcontrib><creatorcontrib>Manganelli, Simone</creatorcontrib><title>VAR for VaR: Measuring tail dependence using multivariate regression quantiles</title><title>Journal of econometrics</title><description>This paper proposes methods for estimation and inference in multivariate, multi-quantile models. The theory can simultaneously accommodate models with multiple random variables, multiple confidence levels, and multiple lags of the associated quantiles. The proposed framework can be conveniently thought of as a vector autoregressive (VAR) extension to quantile models. We estimate a simple version of the model using market equity returns data to analyze spillovers in the values at risk (VaR) between a market index and financial institutions. We construct impulse-response functions for the quantiles of a sample of 230 financial institutions around the world and study how financial institution-specific and system-wide shocks are absorbed by the system. We show how the long-run risk of the largest and most leveraged financial institutions is very sensitive to market wide shocks in situations of financial distress, suggesting that our methodology can prove a valuable addition to the traditional toolkit of policy makers and supervisors.</description><subject>CAViaR</subject><subject>Codependence</subject><subject>Economic models</subject><subject>Economic theory</subject><subject>Estimating techniques</subject><subject>Financial institutions</subject><subject>Financial services</subject><subject>Methodology</subject><subject>Quantile impulse-responses</subject><subject>Random variables</subject><subject>Regression analysis</subject><subject>Risk assessment</subject><subject>Risk management</subject><subject>Spillover</subject><subject>Studies</subject><subject>Value at risk</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkMtK9EAQhRtRcLw8ghBw828SK-lb2o2IeAMvIOq2qelUpEMmPXYngm9vhnH1b1wVFN85VH2MnZRQlFCqs67oyIUhrIoKSllAVQCIHbYoa13lqjZyly2Ag8gFaLXPDlLqAECKmi_Y0_vlS9aGmL3jy3n2SJim6IePbETfZw2taWhocJRNabNdTf3ovzB6HCmL9BEpJR-G7HPCYfQ9pSO212Kf6Ph3HrK3m-vXq7v84fn2_uryIXdS6DF3pq0aUTnNAYU2XChd8dppuVRCGgV8qREb4bA1aGpwUjnE5RKFrA3XJPgh-7ftXcfwOVEa7conR32PA4Up2VKZ-W8joZzR0__QLkxxmK-bqVoIKZTkMyW3lIshpUitXUe_wvhtS7Aby7azv5btxrKFys6W59zFNkfzt1-eok3Ob4w1PpIbbRP8Hw0_HUiH1g</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>White, Halbert</creator><creator>Kim, Tae-Hwan</creator><creator>Manganelli, Simone</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20150701</creationdate><title>VAR for VaR: Measuring tail dependence using multivariate regression quantiles</title><author>White, Halbert ; Kim, Tae-Hwan ; Manganelli, Simone</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c547t-c9f2d42c730a4793467238c75b6459603b7aad4caf9a980c56caabba458937e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>CAViaR</topic><topic>Codependence</topic><topic>Economic models</topic><topic>Economic theory</topic><topic>Estimating techniques</topic><topic>Financial institutions</topic><topic>Financial services</topic><topic>Methodology</topic><topic>Quantile impulse-responses</topic><topic>Random variables</topic><topic>Regression analysis</topic><topic>Risk assessment</topic><topic>Risk management</topic><topic>Spillover</topic><topic>Studies</topic><topic>Value at risk</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>White, Halbert</creatorcontrib><creatorcontrib>Kim, Tae-Hwan</creatorcontrib><creatorcontrib>Manganelli, Simone</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>White, Halbert</au><au>Kim, Tae-Hwan</au><au>Manganelli, Simone</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VAR for VaR: Measuring tail dependence using multivariate regression quantiles</atitle><jtitle>Journal of econometrics</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>187</volume><issue>1</issue><spage>169</spage><epage>188</epage><pages>169-188</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><coden>JECMB6</coden><abstract>This paper proposes methods for estimation and inference in multivariate, multi-quantile models. The theory can simultaneously accommodate models with multiple random variables, multiple confidence levels, and multiple lags of the associated quantiles. The proposed framework can be conveniently thought of as a vector autoregressive (VAR) extension to quantile models. We estimate a simple version of the model using market equity returns data to analyze spillovers in the values at risk (VaR) between a market index and financial institutions. We construct impulse-response functions for the quantiles of a sample of 230 financial institutions around the world and study how financial institution-specific and system-wide shocks are absorbed by the system. We show how the long-run risk of the largest and most leveraged financial institutions is very sensitive to market wide shocks in situations of financial distress, suggesting that our methodology can prove a valuable addition to the traditional toolkit of policy makers and supervisors.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2015.02.004</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Journal of econometrics, 2015-07, Vol.187 (1), p.169-188
issn 0304-4076
1872-6895
language eng
recordid cdi_proquest_miscellaneous_1698959501
source Access via ScienceDirect (Elsevier)
subjects CAViaR
Codependence
Economic models
Economic theory
Estimating techniques
Financial institutions
Financial services
Methodology
Quantile impulse-responses
Random variables
Regression analysis
Risk assessment
Risk management
Spillover
Studies
Value at risk
title VAR for VaR: Measuring tail dependence using multivariate regression quantiles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T02%3A02%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VAR%20for%20VaR:%20Measuring%20tail%20dependence%20using%20multivariate%20regression%20quantiles&rft.jtitle=Journal%20of%20econometrics&rft.au=White,%20Halbert&rft.date=2015-07-01&rft.volume=187&rft.issue=1&rft.spage=169&rft.epage=188&rft.pages=169-188&rft.issn=0304-4076&rft.eissn=1872-6895&rft.coden=JECMB6&rft_id=info:doi/10.1016/j.jeconom.2015.02.004&rft_dat=%3Cproquest_cross%3E3701008031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1684454653&rft_id=info:pmid/&rft_els_id=S0304407615000287&rfr_iscdi=true