Implanted-ion βNMR: A new probe for nanoscience

NMR detected by radioactive beta decay, β-NMR, is undergoing a renaissance largely due to the availability of high intensity low energy beams of the most common probe ion, Li+8, and dedicated facilities for materials research. The radioactive detection scheme, combined with the low energy ion beam,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solid state nuclear magnetic resonance 2015-06, Vol.68-69, p.1-12
1. Verfasser: MacFarlane, W.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title Solid state nuclear magnetic resonance
container_volume 68-69
creator MacFarlane, W.A.
description NMR detected by radioactive beta decay, β-NMR, is undergoing a renaissance largely due to the availability of high intensity low energy beams of the most common probe ion, Li+8, and dedicated facilities for materials research. The radioactive detection scheme, combined with the low energy ion beam, enable depth resolved NMR measurements in crystals, thin films and multilayers on depth scales of 2–200nm. After a brief historical introduction, technical aspects of implanted-ion β-NMR are presented, followed by a review of recent applications to a wide range of solids. [Display omitted]
doi_str_mv 10.1016/j.ssnmr.2015.02.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1698390302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926204015000181</els_id><sourcerecordid>1698390302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-b18ad8670aa00efb7209afee3c2aa1ab3f0117e481e3fcf35af530091dec4b3f3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EoqVwAiSUJZuEsZ04CRKLquKnUgEJwdpynLGUqnGKnYK4FgfhTLiksGQ1i3lv3puPkFMKCQUqLpaJ97Z1CQOaJcASgHSPjGnG8phzJvbJGEomYgYpjMiR90sAyCkXh2TEskLwLBdjAvN2vVK2xzpuOht9fT7cP11G08jie7R2XYWR6Vxkle28btBqPCYHRq08nuzmhLzcXD_P7uLF4-18Nl3EOmVlH1e0UHUhclAKAE2VMyiVQeSaKUVVxQ1QmmNaUORGG54pk3GAktao07DlE3I-3A0tXjfoe9k2XuMqlMVu4yUVZcFL4MCClA9S7TrvHRq5dk2r3IekILeo5FL-oJJbVBKYDKiC62wXsKlarP88v2yC4GoQYHjzrUEndwjqxqHuZd01_wZ8A0nEewU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1698390302</pqid></control><display><type>article</type><title>Implanted-ion βNMR: A new probe for nanoscience</title><source>Elsevier ScienceDirect Journals</source><creator>MacFarlane, W.A.</creator><creatorcontrib>MacFarlane, W.A.</creatorcontrib><description>NMR detected by radioactive beta decay, β-NMR, is undergoing a renaissance largely due to the availability of high intensity low energy beams of the most common probe ion, Li+8, and dedicated facilities for materials research. The radioactive detection scheme, combined with the low energy ion beam, enable depth resolved NMR measurements in crystals, thin films and multilayers on depth scales of 2–200nm. After a brief historical introduction, technical aspects of implanted-ion β-NMR are presented, followed by a review of recent applications to a wide range of solids. [Display omitted]</description><identifier>ISSN: 0926-2040</identifier><identifier>EISSN: 1527-3326</identifier><identifier>DOI: 10.1016/j.ssnmr.2015.02.004</identifier><identifier>PMID: 25863576</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>8Li ; Interfaces ; Muon spin rotation ; Radioactive ion beams ; Thin films ; β-NMR</subject><ispartof>Solid state nuclear magnetic resonance, 2015-06, Vol.68-69, p.1-12</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-b18ad8670aa00efb7209afee3c2aa1ab3f0117e481e3fcf35af530091dec4b3f3</citedby><cites>FETCH-LOGICAL-c429t-b18ad8670aa00efb7209afee3c2aa1ab3f0117e481e3fcf35af530091dec4b3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0926204015000181$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25863576$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>MacFarlane, W.A.</creatorcontrib><title>Implanted-ion βNMR: A new probe for nanoscience</title><title>Solid state nuclear magnetic resonance</title><addtitle>Solid State Nucl Magn Reson</addtitle><description>NMR detected by radioactive beta decay, β-NMR, is undergoing a renaissance largely due to the availability of high intensity low energy beams of the most common probe ion, Li+8, and dedicated facilities for materials research. The radioactive detection scheme, combined with the low energy ion beam, enable depth resolved NMR measurements in crystals, thin films and multilayers on depth scales of 2–200nm. After a brief historical introduction, technical aspects of implanted-ion β-NMR are presented, followed by a review of recent applications to a wide range of solids. [Display omitted]</description><subject>8Li</subject><subject>Interfaces</subject><subject>Muon spin rotation</subject><subject>Radioactive ion beams</subject><subject>Thin films</subject><subject>β-NMR</subject><issn>0926-2040</issn><issn>1527-3326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EoqVwAiSUJZuEsZ04CRKLquKnUgEJwdpynLGUqnGKnYK4FgfhTLiksGQ1i3lv3puPkFMKCQUqLpaJ97Z1CQOaJcASgHSPjGnG8phzJvbJGEomYgYpjMiR90sAyCkXh2TEskLwLBdjAvN2vVK2xzpuOht9fT7cP11G08jie7R2XYWR6Vxkle28btBqPCYHRq08nuzmhLzcXD_P7uLF4-18Nl3EOmVlH1e0UHUhclAKAE2VMyiVQeSaKUVVxQ1QmmNaUORGG54pk3GAktao07DlE3I-3A0tXjfoe9k2XuMqlMVu4yUVZcFL4MCClA9S7TrvHRq5dk2r3IekILeo5FL-oJJbVBKYDKiC62wXsKlarP88v2yC4GoQYHjzrUEndwjqxqHuZd01_wZ8A0nEewU</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>MacFarlane, W.A.</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150601</creationdate><title>Implanted-ion βNMR: A new probe for nanoscience</title><author>MacFarlane, W.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-b18ad8670aa00efb7209afee3c2aa1ab3f0117e481e3fcf35af530091dec4b3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>8Li</topic><topic>Interfaces</topic><topic>Muon spin rotation</topic><topic>Radioactive ion beams</topic><topic>Thin films</topic><topic>β-NMR</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MacFarlane, W.A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Solid state nuclear magnetic resonance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MacFarlane, W.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implanted-ion βNMR: A new probe for nanoscience</atitle><jtitle>Solid state nuclear magnetic resonance</jtitle><addtitle>Solid State Nucl Magn Reson</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>68-69</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0926-2040</issn><eissn>1527-3326</eissn><abstract>NMR detected by radioactive beta decay, β-NMR, is undergoing a renaissance largely due to the availability of high intensity low energy beams of the most common probe ion, Li+8, and dedicated facilities for materials research. The radioactive detection scheme, combined with the low energy ion beam, enable depth resolved NMR measurements in crystals, thin films and multilayers on depth scales of 2–200nm. After a brief historical introduction, technical aspects of implanted-ion β-NMR are presented, followed by a review of recent applications to a wide range of solids. [Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>25863576</pmid><doi>10.1016/j.ssnmr.2015.02.004</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0926-2040
ispartof Solid state nuclear magnetic resonance, 2015-06, Vol.68-69, p.1-12
issn 0926-2040
1527-3326
language eng
recordid cdi_proquest_miscellaneous_1698390302
source Elsevier ScienceDirect Journals
subjects 8Li
Interfaces
Muon spin rotation
Radioactive ion beams
Thin films
β-NMR
title Implanted-ion βNMR: A new probe for nanoscience
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A36%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implanted-ion%20%CE%B2NMR:%20A%20new%20probe%20for%20nanoscience&rft.jtitle=Solid%20state%20nuclear%20magnetic%20resonance&rft.au=MacFarlane,%20W.A.&rft.date=2015-06-01&rft.volume=68-69&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0926-2040&rft.eissn=1527-3326&rft_id=info:doi/10.1016/j.ssnmr.2015.02.004&rft_dat=%3Cproquest_cross%3E1698390302%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1698390302&rft_id=info:pmid/25863576&rft_els_id=S0926204015000181&rfr_iscdi=true