Implanted-ion βNMR: A new probe for nanoscience
NMR detected by radioactive beta decay, β-NMR, is undergoing a renaissance largely due to the availability of high intensity low energy beams of the most common probe ion, Li+8, and dedicated facilities for materials research. The radioactive detection scheme, combined with the low energy ion beam,...
Gespeichert in:
Veröffentlicht in: | Solid state nuclear magnetic resonance 2015-06, Vol.68-69, p.1-12 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Solid state nuclear magnetic resonance |
container_volume | 68-69 |
creator | MacFarlane, W.A. |
description | NMR detected by radioactive beta decay, β-NMR, is undergoing a renaissance largely due to the availability of high intensity low energy beams of the most common probe ion, Li+8, and dedicated facilities for materials research. The radioactive detection scheme, combined with the low energy ion beam, enable depth resolved NMR measurements in crystals, thin films and multilayers on depth scales of 2–200nm. After a brief historical introduction, technical aspects of implanted-ion β-NMR are presented, followed by a review of recent applications to a wide range of solids.
[Display omitted] |
doi_str_mv | 10.1016/j.ssnmr.2015.02.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1698390302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926204015000181</els_id><sourcerecordid>1698390302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-b18ad8670aa00efb7209afee3c2aa1ab3f0117e481e3fcf35af530091dec4b3f3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EoqVwAiSUJZuEsZ04CRKLquKnUgEJwdpynLGUqnGKnYK4FgfhTLiksGQ1i3lv3puPkFMKCQUqLpaJ97Z1CQOaJcASgHSPjGnG8phzJvbJGEomYgYpjMiR90sAyCkXh2TEskLwLBdjAvN2vVK2xzpuOht9fT7cP11G08jie7R2XYWR6Vxkle28btBqPCYHRq08nuzmhLzcXD_P7uLF4-18Nl3EOmVlH1e0UHUhclAKAE2VMyiVQeSaKUVVxQ1QmmNaUORGG54pk3GAktao07DlE3I-3A0tXjfoe9k2XuMqlMVu4yUVZcFL4MCClA9S7TrvHRq5dk2r3IekILeo5FL-oJJbVBKYDKiC62wXsKlarP88v2yC4GoQYHjzrUEndwjqxqHuZd01_wZ8A0nEewU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1698390302</pqid></control><display><type>article</type><title>Implanted-ion βNMR: A new probe for nanoscience</title><source>Elsevier ScienceDirect Journals</source><creator>MacFarlane, W.A.</creator><creatorcontrib>MacFarlane, W.A.</creatorcontrib><description>NMR detected by radioactive beta decay, β-NMR, is undergoing a renaissance largely due to the availability of high intensity low energy beams of the most common probe ion, Li+8, and dedicated facilities for materials research. The radioactive detection scheme, combined with the low energy ion beam, enable depth resolved NMR measurements in crystals, thin films and multilayers on depth scales of 2–200nm. After a brief historical introduction, technical aspects of implanted-ion β-NMR are presented, followed by a review of recent applications to a wide range of solids.
[Display omitted]</description><identifier>ISSN: 0926-2040</identifier><identifier>EISSN: 1527-3326</identifier><identifier>DOI: 10.1016/j.ssnmr.2015.02.004</identifier><identifier>PMID: 25863576</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>8Li ; Interfaces ; Muon spin rotation ; Radioactive ion beams ; Thin films ; β-NMR</subject><ispartof>Solid state nuclear magnetic resonance, 2015-06, Vol.68-69, p.1-12</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-b18ad8670aa00efb7209afee3c2aa1ab3f0117e481e3fcf35af530091dec4b3f3</citedby><cites>FETCH-LOGICAL-c429t-b18ad8670aa00efb7209afee3c2aa1ab3f0117e481e3fcf35af530091dec4b3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0926204015000181$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25863576$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>MacFarlane, W.A.</creatorcontrib><title>Implanted-ion βNMR: A new probe for nanoscience</title><title>Solid state nuclear magnetic resonance</title><addtitle>Solid State Nucl Magn Reson</addtitle><description>NMR detected by radioactive beta decay, β-NMR, is undergoing a renaissance largely due to the availability of high intensity low energy beams of the most common probe ion, Li+8, and dedicated facilities for materials research. The radioactive detection scheme, combined with the low energy ion beam, enable depth resolved NMR measurements in crystals, thin films and multilayers on depth scales of 2–200nm. After a brief historical introduction, technical aspects of implanted-ion β-NMR are presented, followed by a review of recent applications to a wide range of solids.
[Display omitted]</description><subject>8Li</subject><subject>Interfaces</subject><subject>Muon spin rotation</subject><subject>Radioactive ion beams</subject><subject>Thin films</subject><subject>β-NMR</subject><issn>0926-2040</issn><issn>1527-3326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EoqVwAiSUJZuEsZ04CRKLquKnUgEJwdpynLGUqnGKnYK4FgfhTLiksGQ1i3lv3puPkFMKCQUqLpaJ97Z1CQOaJcASgHSPjGnG8phzJvbJGEomYgYpjMiR90sAyCkXh2TEskLwLBdjAvN2vVK2xzpuOht9fT7cP11G08jie7R2XYWR6Vxkle28btBqPCYHRq08nuzmhLzcXD_P7uLF4-18Nl3EOmVlH1e0UHUhclAKAE2VMyiVQeSaKUVVxQ1QmmNaUORGG54pk3GAktao07DlE3I-3A0tXjfoe9k2XuMqlMVu4yUVZcFL4MCClA9S7TrvHRq5dk2r3IekILeo5FL-oJJbVBKYDKiC62wXsKlarP88v2yC4GoQYHjzrUEndwjqxqHuZd01_wZ8A0nEewU</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>MacFarlane, W.A.</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150601</creationdate><title>Implanted-ion βNMR: A new probe for nanoscience</title><author>MacFarlane, W.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-b18ad8670aa00efb7209afee3c2aa1ab3f0117e481e3fcf35af530091dec4b3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>8Li</topic><topic>Interfaces</topic><topic>Muon spin rotation</topic><topic>Radioactive ion beams</topic><topic>Thin films</topic><topic>β-NMR</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MacFarlane, W.A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Solid state nuclear magnetic resonance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MacFarlane, W.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implanted-ion βNMR: A new probe for nanoscience</atitle><jtitle>Solid state nuclear magnetic resonance</jtitle><addtitle>Solid State Nucl Magn Reson</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>68-69</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0926-2040</issn><eissn>1527-3326</eissn><abstract>NMR detected by radioactive beta decay, β-NMR, is undergoing a renaissance largely due to the availability of high intensity low energy beams of the most common probe ion, Li+8, and dedicated facilities for materials research. The radioactive detection scheme, combined with the low energy ion beam, enable depth resolved NMR measurements in crystals, thin films and multilayers on depth scales of 2–200nm. After a brief historical introduction, technical aspects of implanted-ion β-NMR are presented, followed by a review of recent applications to a wide range of solids.
[Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>25863576</pmid><doi>10.1016/j.ssnmr.2015.02.004</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-2040 |
ispartof | Solid state nuclear magnetic resonance, 2015-06, Vol.68-69, p.1-12 |
issn | 0926-2040 1527-3326 |
language | eng |
recordid | cdi_proquest_miscellaneous_1698390302 |
source | Elsevier ScienceDirect Journals |
subjects | 8Li Interfaces Muon spin rotation Radioactive ion beams Thin films β-NMR |
title | Implanted-ion βNMR: A new probe for nanoscience |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A36%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implanted-ion%20%CE%B2NMR:%20A%20new%20probe%20for%20nanoscience&rft.jtitle=Solid%20state%20nuclear%20magnetic%20resonance&rft.au=MacFarlane,%20W.A.&rft.date=2015-06-01&rft.volume=68-69&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0926-2040&rft.eissn=1527-3326&rft_id=info:doi/10.1016/j.ssnmr.2015.02.004&rft_dat=%3Cproquest_cross%3E1698390302%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1698390302&rft_id=info:pmid/25863576&rft_els_id=S0926204015000181&rfr_iscdi=true |