N‑Trimethyl Chitosan Chloride-Coated PLGA Nanoparticles Overcoming Multiple Barriers to Oral Insulin Absorption

Although several strategies have been applied for oral insulin delivery to improve insulin bioavailability, little success has been achieved. To overcome multiple barriers to oral insulin absorption simultaneously, insulin-loaded N-trimethyl chitosan chloride (TMC)-coated polylactide-co-glycoside (P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2015-07, Vol.7 (28), p.15430-15441
Hauptverfasser: Sheng, Jianyong, Han, Limei, Qin, Jing, Ru, Ge, Li, Ruixiang, Wu, Lihong, Cui, Dongqi, Yang, Pei, He, Yuwei, Wang, Jianxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15441
container_issue 28
container_start_page 15430
container_title ACS applied materials & interfaces
container_volume 7
creator Sheng, Jianyong
Han, Limei
Qin, Jing
Ru, Ge
Li, Ruixiang
Wu, Lihong
Cui, Dongqi
Yang, Pei
He, Yuwei
Wang, Jianxin
description Although several strategies have been applied for oral insulin delivery to improve insulin bioavailability, little success has been achieved. To overcome multiple barriers to oral insulin absorption simultaneously, insulin-loaded N-trimethyl chitosan chloride (TMC)-coated polylactide-co-glycoside (PLGA) nanoparticles (Ins TMC-PLGA NPs) were formulated in our study. The Ins TMC-PLGA NPs were prepared using the double-emulsion solvent evaporation method and were characterized to determine their size (247.6 ± 7.2 nm), ζ-potential (45.2 ± 4.6 mV), insulin-loading capacity (7.8 ± 0.5%) and encapsulation efficiency (47.0 ± 2.9%). The stability and insulin release of the nanoparticles in enzyme-containing simulated gastrointestinal fluids suggested that the TMC-PLGA NPs could partially protect insulin from enzymatic degradation. Compared with unmodified PLGA NPs, the positively charged TMC-PLGA NPs could improve the mucus penetration of insulin in mucus-secreting HT29-MTX cells, the cellular uptake of insulin via clathrin- or adsorption-mediated endocytosis in Caco-2 cells and the permeation of insulin across a Caco-2 cell monolayer through tight junction opening. After oral administration in mice, the TMC-PLGA NPs moved more slowly through the gastrointestinal tract compared with unmodified PLGA NPs, indicating the mucoadhesive property of the nanoparticles after TMC coating. Additionally, in pharmacological studies in diabetic rats, orally administered Ins TMC-PLGA NPs produced a stronger hypoglycemic effect, with 2-fold higher relative pharmacological availability compared with unmodified NPs. In conclusion, oral insulin absorption is improved by TMC-PLGA NPs with the multiple absorption barriers overcome simultaneously. TMC-PLGA NPs may be a promising drug delivery system for oral administration of macromolecular therapeutics.
doi_str_mv 10.1021/acsami.5b03555
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1698390080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1698390080</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-28ff69d660215d6237689c5102701e8dbb9e46f8a5a43efaadf0dcde668e024c3</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EoqWwMiKPCCnFTmI3GUvFn1QoA8yRE99QV06c2g5SN16BV-RJMGrpxnTv8J0jnQ-hc0rGlMT0WlRONGrMSpIwxg7QkOZpGmUxiw_3f5oO0IlzK0J4EhN2jAYxp5QSyoZo_fz9-fVqVQN-udF4tlTeONGGRxurJEQzIzxI_DK_n-Jn0ZpOWK8qDQ4vPsBWplHtO37qtVedBnwjrFVgHfYGL6zQ-LF1vVYtnpbO2M4r056io1poB2e7O0Jvd7evs4dovrh_nE3nkUhy7qM4q2ueS87DSiZ5nEx4llcsjJ4QCpksyxxSXmeCiTSBWghZE1lJ4DwDEqdVMkKX297OmnUPzheNchVoLVowvSsoz7MkJyQjAR1v0coa5yzURReMCLspKCl-NRdbzcVOcwhc7Lr7sgG5x_-8BuBqC4RgsTK9bcPU_9p-AFWIib8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1698390080</pqid></control><display><type>article</type><title>N‑Trimethyl Chitosan Chloride-Coated PLGA Nanoparticles Overcoming Multiple Barriers to Oral Insulin Absorption</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Sheng, Jianyong ; Han, Limei ; Qin, Jing ; Ru, Ge ; Li, Ruixiang ; Wu, Lihong ; Cui, Dongqi ; Yang, Pei ; He, Yuwei ; Wang, Jianxin</creator><creatorcontrib>Sheng, Jianyong ; Han, Limei ; Qin, Jing ; Ru, Ge ; Li, Ruixiang ; Wu, Lihong ; Cui, Dongqi ; Yang, Pei ; He, Yuwei ; Wang, Jianxin</creatorcontrib><description>Although several strategies have been applied for oral insulin delivery to improve insulin bioavailability, little success has been achieved. To overcome multiple barriers to oral insulin absorption simultaneously, insulin-loaded N-trimethyl chitosan chloride (TMC)-coated polylactide-co-glycoside (PLGA) nanoparticles (Ins TMC-PLGA NPs) were formulated in our study. The Ins TMC-PLGA NPs were prepared using the double-emulsion solvent evaporation method and were characterized to determine their size (247.6 ± 7.2 nm), ζ-potential (45.2 ± 4.6 mV), insulin-loading capacity (7.8 ± 0.5%) and encapsulation efficiency (47.0 ± 2.9%). The stability and insulin release of the nanoparticles in enzyme-containing simulated gastrointestinal fluids suggested that the TMC-PLGA NPs could partially protect insulin from enzymatic degradation. Compared with unmodified PLGA NPs, the positively charged TMC-PLGA NPs could improve the mucus penetration of insulin in mucus-secreting HT29-MTX cells, the cellular uptake of insulin via clathrin- or adsorption-mediated endocytosis in Caco-2 cells and the permeation of insulin across a Caco-2 cell monolayer through tight junction opening. After oral administration in mice, the TMC-PLGA NPs moved more slowly through the gastrointestinal tract compared with unmodified PLGA NPs, indicating the mucoadhesive property of the nanoparticles after TMC coating. Additionally, in pharmacological studies in diabetic rats, orally administered Ins TMC-PLGA NPs produced a stronger hypoglycemic effect, with 2-fold higher relative pharmacological availability compared with unmodified NPs. In conclusion, oral insulin absorption is improved by TMC-PLGA NPs with the multiple absorption barriers overcome simultaneously. TMC-PLGA NPs may be a promising drug delivery system for oral administration of macromolecular therapeutics.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.5b03555</identifier><identifier>PMID: 26111015</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Administration, Oral ; Animals ; Chitosan - chemistry ; Diabetes Mellitus, Experimental - drug therapy ; Drug Carriers - chemistry ; Drug Delivery Systems - instrumentation ; Drug Delivery Systems - methods ; Humans ; Insulin - administration &amp; dosage ; Insulin - chemistry ; Insulin - pharmacokinetics ; Lactic Acid - chemistry ; Male ; Mice ; Polyglycolic Acid - chemistry ; Rats ; Rats, Wistar</subject><ispartof>ACS applied materials &amp; interfaces, 2015-07, Vol.7 (28), p.15430-15441</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-28ff69d660215d6237689c5102701e8dbb9e46f8a5a43efaadf0dcde668e024c3</citedby><cites>FETCH-LOGICAL-a396t-28ff69d660215d6237689c5102701e8dbb9e46f8a5a43efaadf0dcde668e024c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.5b03555$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.5b03555$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26111015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sheng, Jianyong</creatorcontrib><creatorcontrib>Han, Limei</creatorcontrib><creatorcontrib>Qin, Jing</creatorcontrib><creatorcontrib>Ru, Ge</creatorcontrib><creatorcontrib>Li, Ruixiang</creatorcontrib><creatorcontrib>Wu, Lihong</creatorcontrib><creatorcontrib>Cui, Dongqi</creatorcontrib><creatorcontrib>Yang, Pei</creatorcontrib><creatorcontrib>He, Yuwei</creatorcontrib><creatorcontrib>Wang, Jianxin</creatorcontrib><title>N‑Trimethyl Chitosan Chloride-Coated PLGA Nanoparticles Overcoming Multiple Barriers to Oral Insulin Absorption</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Although several strategies have been applied for oral insulin delivery to improve insulin bioavailability, little success has been achieved. To overcome multiple barriers to oral insulin absorption simultaneously, insulin-loaded N-trimethyl chitosan chloride (TMC)-coated polylactide-co-glycoside (PLGA) nanoparticles (Ins TMC-PLGA NPs) were formulated in our study. The Ins TMC-PLGA NPs were prepared using the double-emulsion solvent evaporation method and were characterized to determine their size (247.6 ± 7.2 nm), ζ-potential (45.2 ± 4.6 mV), insulin-loading capacity (7.8 ± 0.5%) and encapsulation efficiency (47.0 ± 2.9%). The stability and insulin release of the nanoparticles in enzyme-containing simulated gastrointestinal fluids suggested that the TMC-PLGA NPs could partially protect insulin from enzymatic degradation. Compared with unmodified PLGA NPs, the positively charged TMC-PLGA NPs could improve the mucus penetration of insulin in mucus-secreting HT29-MTX cells, the cellular uptake of insulin via clathrin- or adsorption-mediated endocytosis in Caco-2 cells and the permeation of insulin across a Caco-2 cell monolayer through tight junction opening. After oral administration in mice, the TMC-PLGA NPs moved more slowly through the gastrointestinal tract compared with unmodified PLGA NPs, indicating the mucoadhesive property of the nanoparticles after TMC coating. Additionally, in pharmacological studies in diabetic rats, orally administered Ins TMC-PLGA NPs produced a stronger hypoglycemic effect, with 2-fold higher relative pharmacological availability compared with unmodified NPs. In conclusion, oral insulin absorption is improved by TMC-PLGA NPs with the multiple absorption barriers overcome simultaneously. TMC-PLGA NPs may be a promising drug delivery system for oral administration of macromolecular therapeutics.</description><subject>Administration, Oral</subject><subject>Animals</subject><subject>Chitosan - chemistry</subject><subject>Diabetes Mellitus, Experimental - drug therapy</subject><subject>Drug Carriers - chemistry</subject><subject>Drug Delivery Systems - instrumentation</subject><subject>Drug Delivery Systems - methods</subject><subject>Humans</subject><subject>Insulin - administration &amp; dosage</subject><subject>Insulin - chemistry</subject><subject>Insulin - pharmacokinetics</subject><subject>Lactic Acid - chemistry</subject><subject>Male</subject><subject>Mice</subject><subject>Polyglycolic Acid - chemistry</subject><subject>Rats</subject><subject>Rats, Wistar</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kL1OwzAUhS0EoqWwMiKPCCnFTmI3GUvFn1QoA8yRE99QV06c2g5SN16BV-RJMGrpxnTv8J0jnQ-hc0rGlMT0WlRONGrMSpIwxg7QkOZpGmUxiw_3f5oO0IlzK0J4EhN2jAYxp5QSyoZo_fz9-fVqVQN-udF4tlTeONGGRxurJEQzIzxI_DK_n-Jn0ZpOWK8qDQ4vPsBWplHtO37qtVedBnwjrFVgHfYGL6zQ-LF1vVYtnpbO2M4r056io1poB2e7O0Jvd7evs4dovrh_nE3nkUhy7qM4q2ueS87DSiZ5nEx4llcsjJ4QCpksyxxSXmeCiTSBWghZE1lJ4DwDEqdVMkKX297OmnUPzheNchVoLVowvSsoz7MkJyQjAR1v0coa5yzURReMCLspKCl-NRdbzcVOcwhc7Lr7sgG5x_-8BuBqC4RgsTK9bcPU_9p-AFWIib8</recordid><startdate>20150722</startdate><enddate>20150722</enddate><creator>Sheng, Jianyong</creator><creator>Han, Limei</creator><creator>Qin, Jing</creator><creator>Ru, Ge</creator><creator>Li, Ruixiang</creator><creator>Wu, Lihong</creator><creator>Cui, Dongqi</creator><creator>Yang, Pei</creator><creator>He, Yuwei</creator><creator>Wang, Jianxin</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150722</creationdate><title>N‑Trimethyl Chitosan Chloride-Coated PLGA Nanoparticles Overcoming Multiple Barriers to Oral Insulin Absorption</title><author>Sheng, Jianyong ; Han, Limei ; Qin, Jing ; Ru, Ge ; Li, Ruixiang ; Wu, Lihong ; Cui, Dongqi ; Yang, Pei ; He, Yuwei ; Wang, Jianxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-28ff69d660215d6237689c5102701e8dbb9e46f8a5a43efaadf0dcde668e024c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Administration, Oral</topic><topic>Animals</topic><topic>Chitosan - chemistry</topic><topic>Diabetes Mellitus, Experimental - drug therapy</topic><topic>Drug Carriers - chemistry</topic><topic>Drug Delivery Systems - instrumentation</topic><topic>Drug Delivery Systems - methods</topic><topic>Humans</topic><topic>Insulin - administration &amp; dosage</topic><topic>Insulin - chemistry</topic><topic>Insulin - pharmacokinetics</topic><topic>Lactic Acid - chemistry</topic><topic>Male</topic><topic>Mice</topic><topic>Polyglycolic Acid - chemistry</topic><topic>Rats</topic><topic>Rats, Wistar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheng, Jianyong</creatorcontrib><creatorcontrib>Han, Limei</creatorcontrib><creatorcontrib>Qin, Jing</creatorcontrib><creatorcontrib>Ru, Ge</creatorcontrib><creatorcontrib>Li, Ruixiang</creatorcontrib><creatorcontrib>Wu, Lihong</creatorcontrib><creatorcontrib>Cui, Dongqi</creatorcontrib><creatorcontrib>Yang, Pei</creatorcontrib><creatorcontrib>He, Yuwei</creatorcontrib><creatorcontrib>Wang, Jianxin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheng, Jianyong</au><au>Han, Limei</au><au>Qin, Jing</au><au>Ru, Ge</au><au>Li, Ruixiang</au><au>Wu, Lihong</au><au>Cui, Dongqi</au><au>Yang, Pei</au><au>He, Yuwei</au><au>Wang, Jianxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>N‑Trimethyl Chitosan Chloride-Coated PLGA Nanoparticles Overcoming Multiple Barriers to Oral Insulin Absorption</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2015-07-22</date><risdate>2015</risdate><volume>7</volume><issue>28</issue><spage>15430</spage><epage>15441</epage><pages>15430-15441</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Although several strategies have been applied for oral insulin delivery to improve insulin bioavailability, little success has been achieved. To overcome multiple barriers to oral insulin absorption simultaneously, insulin-loaded N-trimethyl chitosan chloride (TMC)-coated polylactide-co-glycoside (PLGA) nanoparticles (Ins TMC-PLGA NPs) were formulated in our study. The Ins TMC-PLGA NPs were prepared using the double-emulsion solvent evaporation method and were characterized to determine their size (247.6 ± 7.2 nm), ζ-potential (45.2 ± 4.6 mV), insulin-loading capacity (7.8 ± 0.5%) and encapsulation efficiency (47.0 ± 2.9%). The stability and insulin release of the nanoparticles in enzyme-containing simulated gastrointestinal fluids suggested that the TMC-PLGA NPs could partially protect insulin from enzymatic degradation. Compared with unmodified PLGA NPs, the positively charged TMC-PLGA NPs could improve the mucus penetration of insulin in mucus-secreting HT29-MTX cells, the cellular uptake of insulin via clathrin- or adsorption-mediated endocytosis in Caco-2 cells and the permeation of insulin across a Caco-2 cell monolayer through tight junction opening. After oral administration in mice, the TMC-PLGA NPs moved more slowly through the gastrointestinal tract compared with unmodified PLGA NPs, indicating the mucoadhesive property of the nanoparticles after TMC coating. Additionally, in pharmacological studies in diabetic rats, orally administered Ins TMC-PLGA NPs produced a stronger hypoglycemic effect, with 2-fold higher relative pharmacological availability compared with unmodified NPs. In conclusion, oral insulin absorption is improved by TMC-PLGA NPs with the multiple absorption barriers overcome simultaneously. TMC-PLGA NPs may be a promising drug delivery system for oral administration of macromolecular therapeutics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26111015</pmid><doi>10.1021/acsami.5b03555</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2015-07, Vol.7 (28), p.15430-15441
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1698390080
source MEDLINE; American Chemical Society Journals
subjects Administration, Oral
Animals
Chitosan - chemistry
Diabetes Mellitus, Experimental - drug therapy
Drug Carriers - chemistry
Drug Delivery Systems - instrumentation
Drug Delivery Systems - methods
Humans
Insulin - administration & dosage
Insulin - chemistry
Insulin - pharmacokinetics
Lactic Acid - chemistry
Male
Mice
Polyglycolic Acid - chemistry
Rats
Rats, Wistar
title N‑Trimethyl Chitosan Chloride-Coated PLGA Nanoparticles Overcoming Multiple Barriers to Oral Insulin Absorption
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A49%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=N%E2%80%91Trimethyl%20Chitosan%20Chloride-Coated%20PLGA%20Nanoparticles%20Overcoming%20Multiple%20Barriers%20to%20Oral%20Insulin%20Absorption&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Sheng,%20Jianyong&rft.date=2015-07-22&rft.volume=7&rft.issue=28&rft.spage=15430&rft.epage=15441&rft.pages=15430-15441&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.5b03555&rft_dat=%3Cproquest_cross%3E1698390080%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1698390080&rft_id=info:pmid/26111015&rfr_iscdi=true