Modeling the distribution of urolithiasis prevalence under projected climate change in Iran

Although studies support a positive correlation between temperature and stone risk, the precise relationship between these factors has not been elucidated. We modeled the current distribution of urolithiasis prevalence in Iran using 26 bioclimatic, climatic and topographic variables based on two mul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Urolithiasis 2015-08, Vol.43 (4), p.339-347
Hauptverfasser: Shajari, Ahmad, Sanjerehei, Mohammad Mousaei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 347
container_issue 4
container_start_page 339
container_title Urolithiasis
container_volume 43
creator Shajari, Ahmad
Sanjerehei, Mohammad Mousaei
description Although studies support a positive correlation between temperature and stone risk, the precise relationship between these factors has not been elucidated. We modeled the current distribution of urolithiasis prevalence in Iran using 26 bioclimatic, climatic and topographic variables based on two multivariate linear regression models in geographical information system. The impact of climate change on the stone prevalence was predicted under the projections of GFDL-ESM2G, CCSM4 and HadGEM2-ES climate models by mid-century (2050). Extraterrestrial radiation and isothermality in the first regression model and annual mean temperature, precipitation seasonality and isothermality in the second model were the significant ( P   0.9) and determined a mean urolithiasis prevalence of 6 % (range of 1.5–10.8 %) in Iran. The climate change under the projections of GFDL-ESM2G, CCSM4 and HadGEM2-ES models can, respectively, lead to an average increase of 5.7, 4.3 and 9 % in the urolithiasis prevalence based on the second regression model by 2050. The highest increase of the prevalence will occur in the west, northwest and southwest provinces of the country. Predicting the impact of climate change on climate-related diseases can be useful for effective preventive measures.
doi_str_mv 10.1007/s00240-015-0784-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1697220706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3746354511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-706625d50d6a88b049aed5588d9ba2558bc82ccc5176965fa4f2771c42e6f9c73</originalsourceid><addsrcrecordid>eNp1kMtOAyEUQInRWFP7AW4MiRs3o0AZGJam8ZXUuNGVC8LAnZZmylSYMfHvpWk1xkQ23FzOfXAQOqPkihIirxMhjJOC0LIgsuIFO0AnjCpeSDYVhz8xq0ZoktKK5KOU4pQcoxErlRRiKk_Q21PnoPVhgfslYOdTH3099L4LuGvwELvW90tvkk94E-HDtBAs4CE4iDnRrcD24LBt_dr0gO3ShAVgH_BjNOEUHTWmTTDZ32P0enf7Mnso5s_3j7ObeWE5Z30hiRCsdCVxwlRVTbgy4MqyqpyqDctBbStmrS2pFEqUjeENk5JazkA0ysrpGF3u-uaF3gdIvV77ZKFtTYBuSJoKlT2QPCejF3_QVTfEkLfbUkIpyacqU3RH2dilFKHRm5g_GD81JXorX-_k6yxfb-VrlmvO952Heg3up-JbdQbYDkj5KVuKv0b_2_ULhumOnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1696997439</pqid></control><display><type>article</type><title>Modeling the distribution of urolithiasis prevalence under projected climate change in Iran</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Shajari, Ahmad ; Sanjerehei, Mohammad Mousaei</creator><creatorcontrib>Shajari, Ahmad ; Sanjerehei, Mohammad Mousaei</creatorcontrib><description>Although studies support a positive correlation between temperature and stone risk, the precise relationship between these factors has not been elucidated. We modeled the current distribution of urolithiasis prevalence in Iran using 26 bioclimatic, climatic and topographic variables based on two multivariate linear regression models in geographical information system. The impact of climate change on the stone prevalence was predicted under the projections of GFDL-ESM2G, CCSM4 and HadGEM2-ES climate models by mid-century (2050). Extraterrestrial radiation and isothermality in the first regression model and annual mean temperature, precipitation seasonality and isothermality in the second model were the significant ( P  &lt; 0.01) predictors of urolithiasis prevalence. Both regression models provided good estimates of the stone prevalence ( R 2  &gt; 0.9) and determined a mean urolithiasis prevalence of 6 % (range of 1.5–10.8 %) in Iran. The climate change under the projections of GFDL-ESM2G, CCSM4 and HadGEM2-ES models can, respectively, lead to an average increase of 5.7, 4.3 and 9 % in the urolithiasis prevalence based on the second regression model by 2050. The highest increase of the prevalence will occur in the west, northwest and southwest provinces of the country. Predicting the impact of climate change on climate-related diseases can be useful for effective preventive measures.</description><identifier>ISSN: 2194-7228</identifier><identifier>EISSN: 2194-7236</identifier><identifier>DOI: 10.1007/s00240-015-0784-2</identifier><identifier>PMID: 25976637</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Climate Change ; Female ; Forecasting ; Geographic Information Systems ; Geography, Medical ; Humans ; Iran - epidemiology ; Linear Models ; Male ; Medical Biochemistry ; Medicine ; Medicine &amp; Public Health ; Nephrology ; Original Paper ; Prevalence ; Urolithiasis - epidemiology ; Urology</subject><ispartof>Urolithiasis, 2015-08, Vol.43 (4), p.339-347</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-706625d50d6a88b049aed5588d9ba2558bc82ccc5176965fa4f2771c42e6f9c73</citedby><cites>FETCH-LOGICAL-c442t-706625d50d6a88b049aed5588d9ba2558bc82ccc5176965fa4f2771c42e6f9c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00240-015-0784-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00240-015-0784-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25976637$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shajari, Ahmad</creatorcontrib><creatorcontrib>Sanjerehei, Mohammad Mousaei</creatorcontrib><title>Modeling the distribution of urolithiasis prevalence under projected climate change in Iran</title><title>Urolithiasis</title><addtitle>Urolithiasis</addtitle><addtitle>Urolithiasis</addtitle><description>Although studies support a positive correlation between temperature and stone risk, the precise relationship between these factors has not been elucidated. We modeled the current distribution of urolithiasis prevalence in Iran using 26 bioclimatic, climatic and topographic variables based on two multivariate linear regression models in geographical information system. The impact of climate change on the stone prevalence was predicted under the projections of GFDL-ESM2G, CCSM4 and HadGEM2-ES climate models by mid-century (2050). Extraterrestrial radiation and isothermality in the first regression model and annual mean temperature, precipitation seasonality and isothermality in the second model were the significant ( P  &lt; 0.01) predictors of urolithiasis prevalence. Both regression models provided good estimates of the stone prevalence ( R 2  &gt; 0.9) and determined a mean urolithiasis prevalence of 6 % (range of 1.5–10.8 %) in Iran. The climate change under the projections of GFDL-ESM2G, CCSM4 and HadGEM2-ES models can, respectively, lead to an average increase of 5.7, 4.3 and 9 % in the urolithiasis prevalence based on the second regression model by 2050. The highest increase of the prevalence will occur in the west, northwest and southwest provinces of the country. Predicting the impact of climate change on climate-related diseases can be useful for effective preventive measures.</description><subject>Climate Change</subject><subject>Female</subject><subject>Forecasting</subject><subject>Geographic Information Systems</subject><subject>Geography, Medical</subject><subject>Humans</subject><subject>Iran - epidemiology</subject><subject>Linear Models</subject><subject>Male</subject><subject>Medical Biochemistry</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Nephrology</subject><subject>Original Paper</subject><subject>Prevalence</subject><subject>Urolithiasis - epidemiology</subject><subject>Urology</subject><issn>2194-7228</issn><issn>2194-7236</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp1kMtOAyEUQInRWFP7AW4MiRs3o0AZGJam8ZXUuNGVC8LAnZZmylSYMfHvpWk1xkQ23FzOfXAQOqPkihIirxMhjJOC0LIgsuIFO0AnjCpeSDYVhz8xq0ZoktKK5KOU4pQcoxErlRRiKk_Q21PnoPVhgfslYOdTH3099L4LuGvwELvW90tvkk94E-HDtBAs4CE4iDnRrcD24LBt_dr0gO3ShAVgH_BjNOEUHTWmTTDZ32P0enf7Mnso5s_3j7ObeWE5Z30hiRCsdCVxwlRVTbgy4MqyqpyqDctBbStmrS2pFEqUjeENk5JazkA0ysrpGF3u-uaF3gdIvV77ZKFtTYBuSJoKlT2QPCejF3_QVTfEkLfbUkIpyacqU3RH2dilFKHRm5g_GD81JXorX-_k6yxfb-VrlmvO952Heg3up-JbdQbYDkj5KVuKv0b_2_ULhumOnA</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Shajari, Ahmad</creator><creator>Sanjerehei, Mohammad Mousaei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20150801</creationdate><title>Modeling the distribution of urolithiasis prevalence under projected climate change in Iran</title><author>Shajari, Ahmad ; Sanjerehei, Mohammad Mousaei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-706625d50d6a88b049aed5588d9ba2558bc82ccc5176965fa4f2771c42e6f9c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Climate Change</topic><topic>Female</topic><topic>Forecasting</topic><topic>Geographic Information Systems</topic><topic>Geography, Medical</topic><topic>Humans</topic><topic>Iran - epidemiology</topic><topic>Linear Models</topic><topic>Male</topic><topic>Medical Biochemistry</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Nephrology</topic><topic>Original Paper</topic><topic>Prevalence</topic><topic>Urolithiasis - epidemiology</topic><topic>Urology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shajari, Ahmad</creatorcontrib><creatorcontrib>Sanjerehei, Mohammad Mousaei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Urolithiasis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shajari, Ahmad</au><au>Sanjerehei, Mohammad Mousaei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the distribution of urolithiasis prevalence under projected climate change in Iran</atitle><jtitle>Urolithiasis</jtitle><stitle>Urolithiasis</stitle><addtitle>Urolithiasis</addtitle><date>2015-08-01</date><risdate>2015</risdate><volume>43</volume><issue>4</issue><spage>339</spage><epage>347</epage><pages>339-347</pages><issn>2194-7228</issn><eissn>2194-7236</eissn><abstract>Although studies support a positive correlation between temperature and stone risk, the precise relationship between these factors has not been elucidated. We modeled the current distribution of urolithiasis prevalence in Iran using 26 bioclimatic, climatic and topographic variables based on two multivariate linear regression models in geographical information system. The impact of climate change on the stone prevalence was predicted under the projections of GFDL-ESM2G, CCSM4 and HadGEM2-ES climate models by mid-century (2050). Extraterrestrial radiation and isothermality in the first regression model and annual mean temperature, precipitation seasonality and isothermality in the second model were the significant ( P  &lt; 0.01) predictors of urolithiasis prevalence. Both regression models provided good estimates of the stone prevalence ( R 2  &gt; 0.9) and determined a mean urolithiasis prevalence of 6 % (range of 1.5–10.8 %) in Iran. The climate change under the projections of GFDL-ESM2G, CCSM4 and HadGEM2-ES models can, respectively, lead to an average increase of 5.7, 4.3 and 9 % in the urolithiasis prevalence based on the second regression model by 2050. The highest increase of the prevalence will occur in the west, northwest and southwest provinces of the country. Predicting the impact of climate change on climate-related diseases can be useful for effective preventive measures.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>25976637</pmid><doi>10.1007/s00240-015-0784-2</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2194-7228
ispartof Urolithiasis, 2015-08, Vol.43 (4), p.339-347
issn 2194-7228
2194-7236
language eng
recordid cdi_proquest_miscellaneous_1697220706
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Climate Change
Female
Forecasting
Geographic Information Systems
Geography, Medical
Humans
Iran - epidemiology
Linear Models
Male
Medical Biochemistry
Medicine
Medicine & Public Health
Nephrology
Original Paper
Prevalence
Urolithiasis - epidemiology
Urology
title Modeling the distribution of urolithiasis prevalence under projected climate change in Iran
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A07%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20distribution%20of%20urolithiasis%20prevalence%20under%20projected%20climate%20change%20in%20Iran&rft.jtitle=Urolithiasis&rft.au=Shajari,%20Ahmad&rft.date=2015-08-01&rft.volume=43&rft.issue=4&rft.spage=339&rft.epage=347&rft.pages=339-347&rft.issn=2194-7228&rft.eissn=2194-7236&rft_id=info:doi/10.1007/s00240-015-0784-2&rft_dat=%3Cproquest_cross%3E3746354511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1696997439&rft_id=info:pmid/25976637&rfr_iscdi=true