The biosynthesis, composition and assembly of the outer pollen wall: A tough case to crack

Sporopollenin is a highly durable yet enigmatic component of outer pollen wall exine. Recent genetic and biochemical data demonstrate that key sporopollenin precursors are fatty acid-derived polyketides. •Sporopollenin is an essential component of durable outer pollen and spore walls of land plants....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phytochemistry (Oxford) 2015-05, Vol.113, p.170-182
Hauptverfasser: Quilichini, Teagen D., Grienenberger, Etienne, Douglas, Carl J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 182
container_issue
container_start_page 170
container_title Phytochemistry (Oxford)
container_volume 113
creator Quilichini, Teagen D.
Grienenberger, Etienne
Douglas, Carl J.
description Sporopollenin is a highly durable yet enigmatic component of outer pollen wall exine. Recent genetic and biochemical data demonstrate that key sporopollenin precursors are fatty acid-derived polyketides. •Sporopollenin is an essential component of durable outer pollen and spore walls of land plants.•Recent molecular genetic studies have identified key genes involved in sporopollenin formation.•Tapetum-expressed genes specify fatty acyl-CoA-derived tetraketide sporopollenin components.•Mechanisms of sporopollenin transport and assembly remain to be clarified.•A working model for sporopollenin biosynthesis is proposed. The formation of the durable outer pollen wall, largely composed of sporopollenin, is essential for the protection of the male gametophyte and plant reproduction. Despite its apparent strict conservation amongst land plants, the composition of sporopollenin and the biosynthetic pathway(s) yielding this recalcitrant biopolymer remain elusive. Recent molecular genetic studies in Arabidopsis thaliana (Arabidopsis) and rice have, however, identified key genes involved in sporopollenin formation, allowing a better understanding of the biochemistry and cell biology underlying sporopollenin biosynthesis and pollen wall development. Herein, current knowledge of the biochemical composition of the outer pollen wall is reviewed, with an emphasis on enzymes with characterized biochemical activities in sporopollenin and pollen coat biosynthesis. The tapetum, which forms the innermost sporophytic cell layer of the anther and envelops developing pollen, plays an essential role in sporopollenin and pollen coat formation. Recent studies show that several tapetum-expressed genes encode enzymes that metabolize fatty acid derived compounds to form putative sporopollenin precursors, including tetraketides derived from fatty acyl-CoA starter molecules, but analysis of mutants defective in pollen wall development indicate that other components are also incorporated into sporopollenin. Also highlighted are the many uncertainties remaining in the development of a sporopollenin-fortified pollen wall, particularly in relation to the mechanisms of sporopollenin precursor transport and assembly into the patterned form of the pollen wall. A working model for sporopollenin biosynthesis is proposed based on the data obtained largely from studies of Arabidopsis, and future challenges to complete our understanding of pollen wall biology are outlined.
doi_str_mv 10.1016/j.phytochem.2014.05.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1697217136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0031942214001939</els_id><sourcerecordid>1697217136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-b2a129fcac6380f186194e89d91e8ba21b6e9acf19e32f64eab60c19291585e93</originalsourceid><addsrcrecordid>eNqFkE1P3DAQhq2qVVmgf6H1sQeSzjiJE3NbIb4kJC70wsVynEnjbRIHOwHtv2_QUq6cZg7PO6_mYewHQoqA8tcunbr97G1HQyoA8xSKFEB8YhusyizJSoDPbAOQYaJyIY7YcYw7ACgKKb-yI5ErkEKJDXt86IjXzsf9OHcUXTzj1g-Tj252fuRmbLiJkYa633Pf8pXhfpkp8Mn3PY38xfT9Od_y2S9_Om5NpHXlNhj795R9aU0f6dvbPGG_ry4fLm6Su_vr24vtXWILKOekFgaFaq2xMqugxUqiyqlSjUKqaiOwlqSMbVFRJlqZk6klWFRCYVEVpLIT9vNwdwr-aaE468FFS31vRvJL1ChVKbDETK5oeUBt8DEGavUU3GDCXiPoV7F6p9_F6lexGgq9il2T399Klnqg5j333-QKbA8Ara8-Owo6WkejpcYFsrNuvPuw5B_Aao5T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1697217136</pqid></control><display><type>article</type><title>The biosynthesis, composition and assembly of the outer pollen wall: A tough case to crack</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Quilichini, Teagen D. ; Grienenberger, Etienne ; Douglas, Carl J.</creator><creatorcontrib>Quilichini, Teagen D. ; Grienenberger, Etienne ; Douglas, Carl J.</creatorcontrib><description>Sporopollenin is a highly durable yet enigmatic component of outer pollen wall exine. Recent genetic and biochemical data demonstrate that key sporopollenin precursors are fatty acid-derived polyketides. •Sporopollenin is an essential component of durable outer pollen and spore walls of land plants.•Recent molecular genetic studies have identified key genes involved in sporopollenin formation.•Tapetum-expressed genes specify fatty acyl-CoA-derived tetraketide sporopollenin components.•Mechanisms of sporopollenin transport and assembly remain to be clarified.•A working model for sporopollenin biosynthesis is proposed. The formation of the durable outer pollen wall, largely composed of sporopollenin, is essential for the protection of the male gametophyte and plant reproduction. Despite its apparent strict conservation amongst land plants, the composition of sporopollenin and the biosynthetic pathway(s) yielding this recalcitrant biopolymer remain elusive. Recent molecular genetic studies in Arabidopsis thaliana (Arabidopsis) and rice have, however, identified key genes involved in sporopollenin formation, allowing a better understanding of the biochemistry and cell biology underlying sporopollenin biosynthesis and pollen wall development. Herein, current knowledge of the biochemical composition of the outer pollen wall is reviewed, with an emphasis on enzymes with characterized biochemical activities in sporopollenin and pollen coat biosynthesis. The tapetum, which forms the innermost sporophytic cell layer of the anther and envelops developing pollen, plays an essential role in sporopollenin and pollen coat formation. Recent studies show that several tapetum-expressed genes encode enzymes that metabolize fatty acid derived compounds to form putative sporopollenin precursors, including tetraketides derived from fatty acyl-CoA starter molecules, but analysis of mutants defective in pollen wall development indicate that other components are also incorporated into sporopollenin. Also highlighted are the many uncertainties remaining in the development of a sporopollenin-fortified pollen wall, particularly in relation to the mechanisms of sporopollenin precursor transport and assembly into the patterned form of the pollen wall. A working model for sporopollenin biosynthesis is proposed based on the data obtained largely from studies of Arabidopsis, and future challenges to complete our understanding of pollen wall biology are outlined.</description><identifier>ISSN: 0031-9422</identifier><identifier>EISSN: 1873-3700</identifier><identifier>DOI: 10.1016/j.phytochem.2014.05.002</identifier><identifier>PMID: 24906292</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - metabolism ; Biopolymers - pharmacology ; Carotenoids - pharmacology ; Exine ; Fatty alcohol ; Germ Cells, Plant - physiology ; Male gametophyte ; Molecular Structure ; Oryza - genetics ; Oryza - metabolism ; Pollen - chemistry ; Pollen - metabolism ; Pollen wall ; Polyketide ; Polyketides - metabolism ; Sporopollenin ; Tapetum</subject><ispartof>Phytochemistry (Oxford), 2015-05, Vol.113, p.170-182</ispartof><rights>2014 Elsevier Ltd</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-b2a129fcac6380f186194e89d91e8ba21b6e9acf19e32f64eab60c19291585e93</citedby><cites>FETCH-LOGICAL-c507t-b2a129fcac6380f186194e89d91e8ba21b6e9acf19e32f64eab60c19291585e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0031942214001939$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24906292$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Quilichini, Teagen D.</creatorcontrib><creatorcontrib>Grienenberger, Etienne</creatorcontrib><creatorcontrib>Douglas, Carl J.</creatorcontrib><title>The biosynthesis, composition and assembly of the outer pollen wall: A tough case to crack</title><title>Phytochemistry (Oxford)</title><addtitle>Phytochemistry</addtitle><description>Sporopollenin is a highly durable yet enigmatic component of outer pollen wall exine. Recent genetic and biochemical data demonstrate that key sporopollenin precursors are fatty acid-derived polyketides. •Sporopollenin is an essential component of durable outer pollen and spore walls of land plants.•Recent molecular genetic studies have identified key genes involved in sporopollenin formation.•Tapetum-expressed genes specify fatty acyl-CoA-derived tetraketide sporopollenin components.•Mechanisms of sporopollenin transport and assembly remain to be clarified.•A working model for sporopollenin biosynthesis is proposed. The formation of the durable outer pollen wall, largely composed of sporopollenin, is essential for the protection of the male gametophyte and plant reproduction. Despite its apparent strict conservation amongst land plants, the composition of sporopollenin and the biosynthetic pathway(s) yielding this recalcitrant biopolymer remain elusive. Recent molecular genetic studies in Arabidopsis thaliana (Arabidopsis) and rice have, however, identified key genes involved in sporopollenin formation, allowing a better understanding of the biochemistry and cell biology underlying sporopollenin biosynthesis and pollen wall development. Herein, current knowledge of the biochemical composition of the outer pollen wall is reviewed, with an emphasis on enzymes with characterized biochemical activities in sporopollenin and pollen coat biosynthesis. The tapetum, which forms the innermost sporophytic cell layer of the anther and envelops developing pollen, plays an essential role in sporopollenin and pollen coat formation. Recent studies show that several tapetum-expressed genes encode enzymes that metabolize fatty acid derived compounds to form putative sporopollenin precursors, including tetraketides derived from fatty acyl-CoA starter molecules, but analysis of mutants defective in pollen wall development indicate that other components are also incorporated into sporopollenin. Also highlighted are the many uncertainties remaining in the development of a sporopollenin-fortified pollen wall, particularly in relation to the mechanisms of sporopollenin precursor transport and assembly into the patterned form of the pollen wall. A working model for sporopollenin biosynthesis is proposed based on the data obtained largely from studies of Arabidopsis, and future challenges to complete our understanding of pollen wall biology are outlined.</description><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Biopolymers - pharmacology</subject><subject>Carotenoids - pharmacology</subject><subject>Exine</subject><subject>Fatty alcohol</subject><subject>Germ Cells, Plant - physiology</subject><subject>Male gametophyte</subject><subject>Molecular Structure</subject><subject>Oryza - genetics</subject><subject>Oryza - metabolism</subject><subject>Pollen - chemistry</subject><subject>Pollen - metabolism</subject><subject>Pollen wall</subject><subject>Polyketide</subject><subject>Polyketides - metabolism</subject><subject>Sporopollenin</subject><subject>Tapetum</subject><issn>0031-9422</issn><issn>1873-3700</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1P3DAQhq2qVVmgf6H1sQeSzjiJE3NbIb4kJC70wsVynEnjbRIHOwHtv2_QUq6cZg7PO6_mYewHQoqA8tcunbr97G1HQyoA8xSKFEB8YhusyizJSoDPbAOQYaJyIY7YcYw7ACgKKb-yI5ErkEKJDXt86IjXzsf9OHcUXTzj1g-Tj252fuRmbLiJkYa633Pf8pXhfpkp8Mn3PY38xfT9Od_y2S9_Om5NpHXlNhj795R9aU0f6dvbPGG_ry4fLm6Su_vr24vtXWILKOekFgaFaq2xMqugxUqiyqlSjUKqaiOwlqSMbVFRJlqZk6klWFRCYVEVpLIT9vNwdwr-aaE468FFS31vRvJL1ChVKbDETK5oeUBt8DEGavUU3GDCXiPoV7F6p9_F6lexGgq9il2T399Klnqg5j333-QKbA8Ara8-Owo6WkejpcYFsrNuvPuw5B_Aao5T</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Quilichini, Teagen D.</creator><creator>Grienenberger, Etienne</creator><creator>Douglas, Carl J.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150501</creationdate><title>The biosynthesis, composition and assembly of the outer pollen wall: A tough case to crack</title><author>Quilichini, Teagen D. ; Grienenberger, Etienne ; Douglas, Carl J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-b2a129fcac6380f186194e89d91e8ba21b6e9acf19e32f64eab60c19291585e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Biopolymers - pharmacology</topic><topic>Carotenoids - pharmacology</topic><topic>Exine</topic><topic>Fatty alcohol</topic><topic>Germ Cells, Plant - physiology</topic><topic>Male gametophyte</topic><topic>Molecular Structure</topic><topic>Oryza - genetics</topic><topic>Oryza - metabolism</topic><topic>Pollen - chemistry</topic><topic>Pollen - metabolism</topic><topic>Pollen wall</topic><topic>Polyketide</topic><topic>Polyketides - metabolism</topic><topic>Sporopollenin</topic><topic>Tapetum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quilichini, Teagen D.</creatorcontrib><creatorcontrib>Grienenberger, Etienne</creatorcontrib><creatorcontrib>Douglas, Carl J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Phytochemistry (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quilichini, Teagen D.</au><au>Grienenberger, Etienne</au><au>Douglas, Carl J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The biosynthesis, composition and assembly of the outer pollen wall: A tough case to crack</atitle><jtitle>Phytochemistry (Oxford)</jtitle><addtitle>Phytochemistry</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>113</volume><spage>170</spage><epage>182</epage><pages>170-182</pages><issn>0031-9422</issn><eissn>1873-3700</eissn><abstract>Sporopollenin is a highly durable yet enigmatic component of outer pollen wall exine. Recent genetic and biochemical data demonstrate that key sporopollenin precursors are fatty acid-derived polyketides. •Sporopollenin is an essential component of durable outer pollen and spore walls of land plants.•Recent molecular genetic studies have identified key genes involved in sporopollenin formation.•Tapetum-expressed genes specify fatty acyl-CoA-derived tetraketide sporopollenin components.•Mechanisms of sporopollenin transport and assembly remain to be clarified.•A working model for sporopollenin biosynthesis is proposed. The formation of the durable outer pollen wall, largely composed of sporopollenin, is essential for the protection of the male gametophyte and plant reproduction. Despite its apparent strict conservation amongst land plants, the composition of sporopollenin and the biosynthetic pathway(s) yielding this recalcitrant biopolymer remain elusive. Recent molecular genetic studies in Arabidopsis thaliana (Arabidopsis) and rice have, however, identified key genes involved in sporopollenin formation, allowing a better understanding of the biochemistry and cell biology underlying sporopollenin biosynthesis and pollen wall development. Herein, current knowledge of the biochemical composition of the outer pollen wall is reviewed, with an emphasis on enzymes with characterized biochemical activities in sporopollenin and pollen coat biosynthesis. The tapetum, which forms the innermost sporophytic cell layer of the anther and envelops developing pollen, plays an essential role in sporopollenin and pollen coat formation. Recent studies show that several tapetum-expressed genes encode enzymes that metabolize fatty acid derived compounds to form putative sporopollenin precursors, including tetraketides derived from fatty acyl-CoA starter molecules, but analysis of mutants defective in pollen wall development indicate that other components are also incorporated into sporopollenin. Also highlighted are the many uncertainties remaining in the development of a sporopollenin-fortified pollen wall, particularly in relation to the mechanisms of sporopollenin precursor transport and assembly into the patterned form of the pollen wall. A working model for sporopollenin biosynthesis is proposed based on the data obtained largely from studies of Arabidopsis, and future challenges to complete our understanding of pollen wall biology are outlined.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>24906292</pmid><doi>10.1016/j.phytochem.2014.05.002</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9422
ispartof Phytochemistry (Oxford), 2015-05, Vol.113, p.170-182
issn 0031-9422
1873-3700
language eng
recordid cdi_proquest_miscellaneous_1697217136
source MEDLINE; Elsevier ScienceDirect Journals
subjects Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - metabolism
Biopolymers - pharmacology
Carotenoids - pharmacology
Exine
Fatty alcohol
Germ Cells, Plant - physiology
Male gametophyte
Molecular Structure
Oryza - genetics
Oryza - metabolism
Pollen - chemistry
Pollen - metabolism
Pollen wall
Polyketide
Polyketides - metabolism
Sporopollenin
Tapetum
title The biosynthesis, composition and assembly of the outer pollen wall: A tough case to crack
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A16%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20biosynthesis,%20composition%20and%20assembly%20of%20the%20outer%20pollen%20wall:%20A%20tough%20case%20to%20crack&rft.jtitle=Phytochemistry%20(Oxford)&rft.au=Quilichini,%20Teagen%20D.&rft.date=2015-05-01&rft.volume=113&rft.spage=170&rft.epage=182&rft.pages=170-182&rft.issn=0031-9422&rft.eissn=1873-3700&rft_id=info:doi/10.1016/j.phytochem.2014.05.002&rft_dat=%3Cproquest_cross%3E1697217136%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1697217136&rft_id=info:pmid/24906292&rft_els_id=S0031942214001939&rfr_iscdi=true